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SUMMARY

A detailed study is presented of one~dimensional, inviscid,
nozzle flows with coupled vibrational and dissociational nonequilibrium,
The ordinary coupled differential equations are integrated using the
fourth order Runge-Kutta method on an IBM-7090 computer for several
reservoir conditions, The method is used to predict the flow properties
in the UTIAS 11" x 15" Hypersonic Shock Tunnel nozzle system, It
is shown that the flow quantities are strongly dependent on the vibra-
tional and dissociational models that are used in the analyses.

It was assumed that the vibrational state of the gas may be
represented by a single vibrational temperature and that the effect of
vibrational nonequilibrium on rates of dissociation may be taken into
account by the introduction of a parameter which has the dimensions of
temperature and which gives a higher probability for dissociation from
higher vibrational energy levels. The dependence of this parameter on
translational temperature is derived. However, in the calculations, an
averaged constant value of this parameter is used as a simplification,
The effect of dissociational nonequilibrium on vibrational relaxation is
to modify the classical Landau-Teller equation by additional terms
which take into account the average energy lost or gained due to
dissociation and recombination, A qualitative study of the effects of
the atom-molecule exchange reaction and relaxation from a higher to
lower vibrationally excited state on the vibrational relaxation is carried
out by shortening the vibrational relaxation times from those measured
behind normal shocks,

The analysis has been successfully applied to predict the
hypersonic nozzle test-section conditions for a newly developed UTIAS
self-calibrating catalytic probe for measuring local atom concentrat ions

I — )
in a dissociating oxygen flow,
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NOTATION
nozzle area ratio or Helmholtz free energy function.
nozzle area at the throat.
Helmholtz functions for thermodynamic subsystems con-
sisting of translational, rotational and vibrational degrees of
freedom respectively, given in Eqs., (A2), (A3).

Constants defined in Eqgs. (B70), (B71).

constant in the rate expressions for dissociation Eq, (61) and
vibration Eq, {81),

frozen and partizlly frozen sound speeds.

stoichiometric coefficient for species i in the reaction equation
(36)
Ry °

constant in rate expression for vibration Eq. (81).
stoichiometric coefficiznt for species i in reaction equation (36).
constants in rate expression for vibration Eq. (D11).
constant in the expressicn for dissociation rate Eq. (B13).
dissociation energy.

constauts in rate expression for dissociation Eq, {(D10),
Total internzal energy.

vibrational energies evaluated at translational and vibrational
temperatures Eqs. (74), (75),

activation energy ior dissociation.,

energy of vibrational lavel

average vibrational energies lost in dissociation by molecule -
molecule, atom-mciecule collisions and the sum of these

defined in Eqs. (B44), (B45), (B46).

vibrational energy evaluated at translational temperature,
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kd:3.‘ kdm

kd; , kpn.
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Specific internal energy.
specific internal energy for the thermodynamic subsystems
consisting of translational, internal, chemical modes of

energy storage.

partition functions for translational, rotational and vibra-
tional degrees of freedom.

any extensive quantity of a volume element,
average vibrational energies gained in recombination due to

molecule -molecule, atom-molecule colliston and the sum of
these defined in Eqs. (B48), (B49), (B5l).

partial specific quantities due to species i, defined in Eq. (6).

specific Gibbs potentials for atoms and molecules defined in
Egs. (A27), (A28).

probability or statistical weight of ground energy level, 50,3
( J =1atoms, j= 2 molecules)

specific enthalpy or Planck constant.

thermodynamic fluxes for vibration and dissociation,

vibrational energy level number.

constants defined in Egs. (A29), (A30).

equilibrium constant Eq. (B85).

Boltzmann constant.

reaction rates for reactions in Eq. (39), (48), (49).
dissociational and recombinational rate constants.

rate constant for dissociation due to atom-molecule and
molecule-molecule collisions respectively.

rate constants for dissociation from or recpmbination to
vibrational level j ,
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rate constants for vibrational transitions from level J to s
through collision with a molecule or an atom.

rate constant for transition from first excited level to ground
state.

expression defined in Eq. (B38).

characteristic length,

Mach number.

mass of atoms per unit mole,

mass of a particle of species j (j = 1 atom, j = 2 molecule).
partial mass of species i.

mass flow in the nozzle,

number of particles of species j (j = 1 atom, j = 2 molecule)
or number of molecules in vibrational energy level. j |

total number of particles of all species.

the probability for a reaction to occur in an energetic
collision.

the probability for dissociation from vibrational level j in an
energetic collision,

pressure,

vibrational 4partition functions evaluated at various temperatures.
flow velocity.

gas constant per unit mass referred to diatomic gas.

Reynolds number.

relaxation length.

specific entropy or exponent in the rate expression (64).

t emperature.

time.
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Parameter with dimepsions of temperature used ir, e
definition of Pj .

coupling factor, the ratio of dissociation rate consts:. - for
vibrational nonequilibrium and equilibrium,

distance along nozzle axis,

total number of collisions per sec between np, ng particles
of type A and B in volume V.

collision number of Z per cc per unit concentration,

fractional number of collisions leading to dissociation. from
or recombination to vibrational level J .

collision number for molecule-molecule ard atom-molecule
collisions.

degree of dissociation (mass concentration of atomsy.
boundary layer displacement thickness.

specific vibrational energy evaluated with vibrational and
translational temperatures respectively.,

excess energy of ground state ofj species above reference.
energy level,

expression defined in Eq, (D4l).
expression defined in Eq. (D57).

characteristic temperatures for rotation, vibration and
dissociation respectively.

relative efficiencies of atoms and molecules for causing
dissociation, given in Eq. (B83).

viscosity.
che mi cal potential of species i.
density

characteristic dissociation density given in Eq. (Al6).
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Subscripts
o

d

t

v

e, 9,00

f, f

neq

r

i
Superscript

_.l.

cbllision cross-section for atoms and molecules.
vibrational relaxation time.

= TV expansion/ 7; normal shock.

expression defined in Eq. (B37).

stagnation or reservoir state,
dissociational.

translational.

vibrational.

equilibrium flow conditions.

frozen and partialiy frozen.
nonequilibrium conditions.
reference state or recombinational.

of chemical species i or thermodynamic subsystem i.

activated complex.



L. INTRODUCTION

At present, expansion flows of reacting gases at high temp-
eratures are calculated with the following gas models, which are listed in
order of increasing complexity:

L Ideal or Lighthill dissociating gas for pure diatomic gases,
where vibration is considered to be excited to Half its classical value, with
dissociational nonequilibrium; (e. g. Refs., 1-4).

II, Vibration in equilibrium with translation and rotation, and
with dissociational nonequilibrium (e. g. Refs. 5-12).

III, Simultaneous and independent vibrational and dissociational
nonequilibrium, (Refs., 13-17).

In all these calculations, the vibrational relaxation times
and dissociational and recombinational rate constants used are those deter-
mined behind normal shocks. The vibrational relaxation times are deter-
mined in the absence of dissociation, while dissociational and recombina-
tional rate constants correspond to a situation where the vibration reaches
equilibrium with translation. The modification of the rate constants in the
dissociational rate equation, when vibration has not reached equilibrium with
translation, was considered in Ref. 18, Modification of this type was first
used for flows behind normal shocks by Hammerling, Teare, Kivel (Ref. 19).
This mddel was further extended to take into account the inverse effect of
dissociational nonequilibrium on vibrational relaxation, for flow behind normal
shocks by Treanor and Marrone (Refs. 20-22),

In addition, recent experiments in nozzle expansion flows
(Ref. 23) appear to indicate that the vibrational relaxation times calculated
by using the classical Landau-Teller model may be shorter in such flows.
compared with those behind normal shocks. Consequently, a realistic gas
model has to take into account all of these factors.

Glass and Takano (Ref. 5), in their calculations of expansion
flow of dissociated oxygen around a corner with model (II), found the occurr-
ence of a deexcitation shock behind the expansion fan and noted that this might
not have occurred if a proper vibrational relaxation rate equation had been
used, ,

Also, a probe has been developed at UTIAS for direct measure
ment of atomic mass fraction in UTIAS hypersonic shock tunnel. Since the
coupling of vibrational and dissociational nonequilibrium will have an important
effect on the flow properties of the gas in the test section, in particular on the
frozen atomic mass fraction, it is proposed to consider the effect on expansion
flows in nozzles to give a realistic theoretical estimate of the flow properties
in the test section.



2, THERMODYNAMIC CONSIDERATIONS

In dealing with any nonequilibrium system, the postulate cf
local equilibrium is used., This postulate states:

Postulate I

"For a system in which irreversible processes are taking
place, all thermodynamic functions of state exist for each element of the
system. These thermodynamic quantities for the nonequilibrium system are
the same functions of the local state variables as the corresponding equili-
brium thermodynamic quantities', (Ref. 24).

For a gaseous system consisting of r chemical components
the fundamental state variables may be taken as the mass density £ of a
volume element dV, the partial mass densities /4 of the r chemical
components giving the composition of this volume and the specific internal
energy e of this volume element,- We have, of course:

sR=F . (1

For a nonequilibrium system e , £, , depend on the position 7 in space
and on time ¢ i.e.

C=e(l ¢t) (2)
L= FfiRet) S)
_ (4)

Now the postulate of local equilibrium says that all thermodynamic quantities
for a nonequilibrium system may be defined by the same functional dependence
on p, f,, € as is given by measurements on equilibrium systems. For
example, the local temperature T (¥, + ) may be defined by the same funct:ion
T ( .é’—, € ) as in equilibrium, and so is the local pressurep ( 7.t ). The
specific entropy S is defined by the Gibb's equation '

de =7ds - pdlp) -rz/«id[{}') ' (5)

where. 4y is the chemical potential or partial specific Gibb's free energy of
~component i,

Further the partial specific quantities 51' in an arbitrary volume element
dv of a nonequilibrium system are defined by the equilibrium relation
= 2G

= (5 (6)

~ where G represents any extensive quantity of the volume element dv and mj
is the mass of component i in dv, From this relation, one obtains for the
relations between the specific quantities

e :Z -Fﬁ"f—‘t' (7)

2




(8)

(0

|
~
O

|
L
AN
N
Q

L (9)

h=G& +pPi
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(10)

or hL:T:S: f/b/t_ (11)

At this point it is necessary to consider the meaning of
temperature for a system in simultaneous vibrational and dissociational
nonequilibrium. For simplicity, consider the case of a dissociating pure
diatomic gas such that the system consists of a binary mixture of atoms
and molecules. For such a mixture, the specific internal energy e, temper-
ature T and atomic mass fraction ¢ are related in thermodynamic
equilibrium through

E=Chirot TCws 7 Coliss (12)

c = 2}2&(?77‘ (1) RE, TXRE,

where R is the gas constant referred to the diatomic gas-and is the
vibrational energy which can be expressed for equilibrium in terms of T by

21/::@/[5«,0(—?’/-/7 (13)

and @ s are the characteristic temperatures for vibration and disso-
ciatiod” respec?ively. In the case of vibrational nonequilibrium, the vibra-
tional energy cannot be written so explicitly in terms of the tempera-
ture T and may Kave to be treated as one of the independent variables.

Under the above postulate, the local temperature will be defined by Eq. (12)
along with Eq. (13) for the vibrational energy at equilibrium, or one may
write T as the solution of the equation

I S R A S ) — Cirirot ffzojL,
20-9Z * 5] (g6, E~GR] =755% B,

(14)

where 7 = @% . The three terms in Eq. (12) may be identified as the



contributions to the energy from translational-rotational, vibrational and
dissociational degrees of freedom of the whole system, Thus Eq. (14) will
imply that in the definition of temperature, the dissociative part of the
energy need not be considered, If E is taken as an independent parameter
for vibrational nonequilibrium, one may further define a temperature

T=23n[C ~(1-RE, ~XRE, |

_ = c (15)
—(5'/‘Z}R tr +rot

If the vibrational contribution éy,b to the total specific
internal energy & can be expressed in terms of E defined by Eq., (13)
with the same T as in Eq. (12), then the temperatures defined by Eqgs, (14)
and (15) become identical, This is the case when there is vibrational equili-
brium but dissociational nonequilibrium. When ey,'b cannot be so expressed,
the temperature defined by Egs. (14) and (15) will be different, and according
to the postulate I, the temperature defined by Eq. (14) has to be taken as the
proper one. Eg. (13) can also be solved for another temperature. Let the
temperatures obtained as solutions of Eqs. (13), (14) and (15) be denoted by
T, , T/ and T{. Inthermodynamic equilibrium the relation between
pressure, density and temperature is

P=FRT(rod 16)

By using the three different temperatures, one will get three different
pressures f, /‘D’ p respectively.
Which of these pairs ofT p, are to be used in Egs. (5), (9), (10), (11)?

Wood and Kirkwood (Ref. 25) circumvented this difficulty
by modifying the postulate I as follows:-
"The assumption of local thermodynamic equilibrium within classes of the
degrees of freedom of the system is made, but it is supposed that the attain-
ment of equilibrium between these classes is governed by rate processes
which can be stated in terms of state variables characterizing the partial
equilibrium of various classes. The assumption of equilibrium within each
class means that (classically speaking) a Boltzmann distribution exists for
each and consequently a temperature and entropy, as well as energy, may
be defined for each class'. For a further discussion of some of these points
consult pp's 165-170 of Ref, 43.

It is assumed in this analysis, that the translational degrees
of freedom of all species constitute a single class and the corresponding
temperature, energy, entropy and chemical potential T, , @,, 5/ ' U:
satisfy Eq. (5) i.e. "

de = Tds—Pd(pjfZ/{,, /’?//a/ an

4




whereas the equilibrium states of all other classes, called internal classes,
are assumed to be specified by their respective temperatures 7,', (n>2
and the composition variables }9 alone, such that for these classes Eq.
(5) may be written as !

A€, =Ty dS, +5 U, 6//}'0,/0/ N2z (8)

Thus for the total energy change de of the system Eqgs. (17) and (18) yield

de:; T ds,—pdl }'éﬁg ; M, d( Ff“j as)

Since the pressure p enters only in Eq. (17) for translational degrees of

freedom, the translational temperature T{ and the corresponding pressure
Pt are the set to be used in Eq. (16). The rate processes for the

attainment of equilibrium between these various classes are taken to be of

the form
drt,
= 20
dt n (nzz) (20)

where Q is a function of the local thermodynamic state. These other internal
classes may be taken as rotational and vibrational degrees of freedom while
the chemical nonequilibrium is taken to be described by

a(’%) _

dt w (21)

It was pointed out by Wood and Kirkwood, that this theory is not a micro-
scopic one and this, does not provide a recipe for classification of the degrees
of freedom. This classification is to be done independently of this theory.,
For example, the above classification of translational and internal degrees
of freedom as separate classes may be considered to be obtained from a
statistical description of the various modes of energy storage. Heims

(Ref, 16) pointed out that for a vibrating, dissociating gas, to specify the
properties of the gas completely, it is necessary to specify the internal
energy as in Eq. (12) with €, as an additional independent variable, together
with the equation of state (16), where T is the translational temperature,
This implies that the pressure of the gas comes from translational motion
only., Starting with these two equations and the differential flow relations,

he shows that the entropy S is an exact differential of the variables T4, )0 s
oL = /gm /ID /fy: E,=U-x)E,, R For adiabatic flow, the entropy change due
to the irreversible relaxation processes was shown to be

&/r
WT(-e*%) 4
d5=dev(—7’;'-f}+do<[fg (1o T (1 ) ,7.] .

] fo2 t




Now, when there are two heat reservoirs at temperatures
Ty and Tg and an energy flow between them such that system 1! changes its
energy by de, then the overall entropy increase is

ds=de (—7% - :’é‘) 123)

Heims pointed out that the relaxation prccess is analcgous to heat flow,
energy being interchanged between "systems of vibraticns at temperature

T, ". 'gystems of translational moticns at temperature T, ' and tte
" . - " . T+ ; 3 —%—Z '/
chemical system'" at a chemical ~.‘emperature[ C1-INT (1=~ %7
Y Lo

But, this is exact only for vibraticnal relaxaticn withcut reacticn, ard not
when reaction is occurring. This is sc¢, since in the case cof reaction
occurring, the chemical temperature is dependent crn T, as well as
Ti. '
Anocther important point brought cut in Heim's analysis is the relation be-
tween vibrational relaxation raie and rate of chemical reaction. The right
hand side of Eq. (22) is seen to be composed of the sum of two products.
In the notation of irreversible thermodynamics (Ref, 24), ¥ and

y ( ac M aE

are "Fluxes' ( T‘, ]é ) and the coefficients of d@, and @ in Eq. (22)

are the correspondmg forces (Xv, Xc) and the theory yields a relation be-
tween e = d6/ and = , known as the Onsager reciprocal rela-

de oC, o4
vl = 24
o X, e X, (z
where the subscript eq. means that the derivatives are taken at equilibrium,
Eschenroeder (Ref., 26), uses the concept of chemical temperature, namely

-8/ 7!
o =l LUTYC )] s

tion, namely,

for vibrational equilibrium and chemical ncnequilibrium teo evaluate entropy
rise by the equation

as= dé, (—7% - _74/ (26)

where C/fc is the heat released cor abscrbed by the reaction for the gas
model of Lighthill, For this model, Eq., (2 5) is written as

TC - [Zg (/_0() (27)




where P / = ___f..

DL (28)

-6,
fm2b(2) (-7

fp being the characteristic dissociation density.
Mates and Weatherstone (Ref, 27) examined the justification for using the
concept of multiple temperatures from a classical thermodynamic point of
view, to reconciliate the analyses of Heims and Eschenroeder. They conclude
that the classical thermodynamic temperature can sometimes be used to
characterize a particular degree of freedom, such as vibration, even if it is
not in equilibrium with the other degrees of freedom. But the same is not
true with chemical temperature, except for chemical systems in which the
reactant and products have equal constant volume mass specific heats. An
example of such a system is the ideal dissociating gas of Lighthill,

From all these analyses it would appear that for a gas in
chemical and thermal nonequilibrium, some use of statistical thermodyna-
mics is necessary before one can use the classical thermodynamic relations
involving only macroscopic variables, For example, the classification of
subsystems in the analysis of Wood and Kirkwood and division of energy into
different modes in the analysis of Heims are statistical concepts.

Thus in the present analysis, the following assumptions
will be made:-

) The molecular transport effects leading to viscosity, heat conduction
and diffusion are neglected,

IT) The system may be considered to consist of subsystems character-
ised by the translatioml,rotaticnal and vibrational degrees of freedom.

I11) Even though the total system is in nonequilibrium, there is equili-
brium within the subsystems. Specifically, the translational and rotational
degrees of freedom are in equilibrium within themselves and with each other
such that they may be specified by Boltzmann distributions in terms of a
single parameter, namely the translational temperature T;, The vibrational
subsystem is assumed to be also specified by a Boltzmann distribution in
terms of a parameter, namely vibrational temperature Ty,

Iv) The intensive properties such as density, enthalpy, etc. for the
mixture are the weighted sums of the corresponding properties for the

single system.

V) The Helmholtz free energy function may be written in terms of these
temperatures for the whole system from the statistical thermodynamics and

7



all the other thermodynamic functions like entropy, internal energy,
pressure, etc, can be obtained by the classical thermodynamic relatior.,

It was shown by Treanor (Ref. 28) that for simultanecus
vibrational and dissociational nonequilibrium, the vibrational distributicn
tends to deviate more and more from a Boltzmann distribution with increasing
transiational temperature. However, for the range of temperatures of
interest here (around 5000°K), this deviation seems to be quite predominant
only at higher vibrational energy levels. Thus for simplicity, assumption
III, is made about vibrational temperature.

It was pointed out in Ref. 16 that the electronic partition
functions ‘Fe and VCC,_ for the oxygen atom and molecule respectively
may be taken as constant for the temperature range 1500°K to 80000K, and
that these constants are approximately equal to the degeneracy of the
ground state of atom or molecule, namely, gw and ?o’_ of Append1x A,
For this temperature range the use of values fe - 8.8 and Te, = 3.3
gives of Appendix A within 5 percent and O/ within 2, 5 percent.

See note'{I) Appendix E,

The thermodynamic functions for the gas model considered are derived in
detail in Appendix A. They are Eqgs. (Al8), (A22), (A23), (A27), (A28),
(A31),

Specific internal energy:

Stot . , 6 -+ of 6 |
c ";R [ 2 )i’ ( )5&7;’.' -~/ D J (30)
Specific enthalpy:

h=R[ZXT, +(-o</7z:’“ W@] .

Pressure:

P=fRT7 (1+ <) ) (32)

Specific entropy:
B o]
Tr ()l-™%%)

5"5& [/ x)&,
mwé?[_ff( ) @f( f-%}(/—x/

R 2 7,
Specific chemical potentials:

(33)

for atoms:-

3,=r6, ¢ Zg(’;-%-’z) o
8




for molecules:-

% "% -
i=—~r bl Fr &€ T

where constants K;, Ko 5 _SA/ are defined by Eqgs. (A29), (A30), (Al7)
respectively, R is gas constant per unit mass of the diatomic gas, ¢
atomic mass fraction, ﬁv s @p are the characteristic temperatures for
vibration and dissociation, Ty, T, are the translational and vibrational
temperatures and Ey; is the vibrational energy defined by Eq. (13) with

T = Ty.

3. RATE EQUATIONS

3.1 Chemical Reactions:-

In all the studies involving chemical reactions referred to in the introduction,
for a reaction equation of the type

2.4 X, —%__ 2. b X, (36)

where x; denpte the chemical species and {; , bi are the stoichiometric
coefficients 'of the reactants and products respectively, it is assumed that
the rate of reaction for species x; may be written as

X. R '
dcgt'] = Ry TT[%;] —kr_“xi]b o

where TI denotes the product and kg, k,. are considered to be dependent on
temperature alone and not on concentrations, But there appear to be circum-
stances when this is not true. A short discussion of chemical ideas concern-
ing these rates will clarify the point,

3.1.1, Chemical Model:-

In the study of chemistry, reactions are considered to occur through what
are called activated complexes. For simplicity consider at constant temp-
erature, the reaction

A+ B —&-products D (38)
The process is then written as
k
A+ BIT—=(A + B)*—>2— Products D (39)

-1
where (A+B)T is an activated complex of A and B, There are two theories



describing the relation between (A+B)* and the reactants and products, namely
I) Equilibrium theory and II) Steady state theory (Refs. 29, 30).

I) Equilibrium rates:-

In this analysis it is supposed that the reactants and the activated
complexes are in equilibrium with each other, and that the rates of the three
reactions indicated in Eq, (39) may be written as the product of concentra-
tions times a constant which is dependent on temperature alone, For exampile,

dlca+e'] =’k‘[fﬂ[5] _ k-‘[(,q-rb)j (40)

dt

for the first part of the reaction and

[DJ = t, [(A* b)*:l | . (41)

for the second part of the reaction. From the assumption of equilibrium of
the first part of the reaction, equating Eq. (40) to zero and then solving for
(A+B)* and substituting in Eq. (41), one can write for the reaction of

Eq. (38), ' :

u%&%l:kﬁﬂ[a}%,@;ﬂ[&] e

giving

R, = ={(1)

such that kj is a function of temperaturé alone since Kkj, k_.l, ko are assumed
to be functions of temperature alone.

(43)

IT) Steady state rates:-

In this analysis, no equilibrium is assumed between the activated
complexes and reactants, It is assumed that the activated complexes exist
for a short time interval after formation, and then either they become pro-
ducts or return to the reactant state.

It is again assumed thét the rates of the elementary reactants can
be written as in’ Eqs. (40), (41). For the steady state equation, one has |

d[&“t"@l b [ANE) 4 \wef] — k. [(a+e)t]=o0 (a8

10




L el Ly -

dtg = F\ tB) J ‘%‘L LA] [51_ diﬂ] LB] (46)

kR k, 47
k= k_,*k (a7)

I1I) Dissociation of Diatomic molecule:-

For molecular dissociation, the reaction is known to proceed in
two steps kl

A+AT-—"‘ A"+ A

(48)
which replace /} ——» PFOdUCf—J (49)
A+ A '—kﬁ"- Products (50)

In the Equilibrium assumption, one finds

A1 Té-.geﬂ*lif\] =0
7 _ ]

LR™]= B LA]

_1 a7z dlAl dA*( r *. % (51)
&dE"} —dt 'v‘zZAJN “.7—-‘-[’3

or _ bk,
ke = ®_TAT

with the steady state assumption
% (A]*- & LA*IIA]- R (A" ]= O
] =g AT

- = _ d[AR] ¥ 2 2
kd[ﬂ] —m—z‘i[a%%- -k, [A)= f?.,{aﬂﬁ*'féz LA]? (52)
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__ k*k
Ry = ®,[A] + &,

This it would appear that rate coefficients k4 are dependent on concentration
as well as on temperature. One important point to be noted is that the final
stage, that is Eq. (49) is supposedto occur without any further collisions,
but by only a reshuffling of the energy in the various internal modes to the
bond that is to be broken, Thus, in a complex molecule with several vibra-
tional modes, the energy acquired by collisions may be initially distributed
in such a way that it is not immediately transferred to the bond that breaks
ultimately and some time may elapse before, if ever, this event takes place.

or

Another interesting point to be noted is that the equilibrium assump -
tion for the rates of a diatomic molecule means that one may assign a vibra-
tional temperature Ty, to indicate the vibrational energy distribution in
various levels. This may be visualised by considering A and A%* as ground
and excited vibrational states. This temperature may or may not be in
equilibrium with the translational temperature T4. In the latter case, the
coefficients ki, k_q, kg in Egs. (51), (52) will have to be dependent on Ty
as well as Ty, and consequently, so will kqg.

The steady state assumption for diatomic molecules means that no
equilibrium within the vibrational degrees of freedom can be assumed that
is, there is a non-Boltzmann distribution in vibration, In the present report,
the rate coefficients will thus be equilibrium rates in the chemical language
because of the assumption of Boltzmann distribution in vibration. The disso-
ciation mechanism is discussed in more detail in Appendix E.

IV) Rate Coefficients:-
Thus for a dissociating diatomic gas following the reaction

Az + X A+A+ X (53)

-5

where x may be either an atom or molecule, the net rate of reaction may be

written as
AL — _k[A]Ix] +#[A]°[<] 54

where kg and ky are called the rate constants and are temperature dependent
only. They are also called rate coefficients or specific rates. If Zd and
Zr are the number of dissociations and recombinations per cc per sec, then

dt b (55)
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Z'd =‘ kd 2’42} [X_Z (56)

and A= kr [HIZZX:( (57)

—_ Zd 58
& T [AJLx] e

or Zp
/{éf‘: iﬁ]z{xj (59)

The ratio of these forward and backwards rate coefficients kd/kr is thus
dependent upon temperature only and this ratio is known as the equilibrium
constant K, since at chemical equilibrium Zq = Z; and this ratio is

_ k4 _ (AP
K= Re ([F\J «t

(60)

Kc. can be calculated from statistical mechanics (Refs. 29, 30). Arrhenius
was the first to investigate the temperature dependence of ¥4 experimentally
and proposed an exponential dependence on temperature, It is now usual to

assume: _Ef
Ra=A(T)E e
:ATn C_ E/éT (61)

where E* is the activation energy and is normally taken to be equal to the
dissociation energy D for diatomic molecules.

Finally one has,

. .
kd= aT" c 4 (62)

where a and n are empirical constants. This expression for kg can also be
derived using Thermodynamic considerations (Refs. 29, 30).

3.1.2., Collision Theory:-

Let np and ng be the number densities of molecules of type A and type B.
Let z be the number of collisions per cc per sec, between these two types
" of molecules, In the simplest model for reaction, it is assumed that the
reaction occurs whenever collision occurs with particles in an activated or

13



energised state, that is with an energy greater than or equal to the activation
energy. Then the number of reactions per cc per sec. may be written as

Zd = z 6—’57&1' (63)

—E%
where the factor e E/&[ is that fraction of all collisions for which the
kinetic energy of relative translational motion along the line of centres at
the moment of impact exceeds E*, The quantity E* is known as the activation
energy and is in general assumed to be the dissociation energy. In this
model only the translational energy of the molecules is taken into account.
As this prediction does not agree with observed reaction rates, a probability
factor P is added. In addition all the degrees of freedom of the colliding
partners, like vibrational and rotational, are also taken into account giving

finally, (Ref. 31)
Efr)
=Pz ( S.,) S

(64)

A4

where

P is the probability for the reaction to occur

Z is the number of collisions per cc per sec between
the na, ng number of molecules of types A and B,

E* is the activation energy or the minimum total energy
necessary for reaction to occur, taken to be equal to
the dissociation energy D,

T is the temperature of the gas mixture,

s is the factor that takes into account the internal degrees

- of freedom of the particles entering in collision and is
shown to be 1 for diatomic molecule-atom collisions and
2 for diatomic molecule-molecule collisions.

In the derivation of Eq. (64) it is assumed that the vibration is in equilibrium
with rotational and translational degrees of freedom.

Equilibrium Rates:-

For reaction between molecules A and B, the equilibrium rates,
that is rates for the activated complexes being in equilibrium with unactivated
molecules, are written in terms of partition functions with the aid of statis-
tical mechanics as (Ref, 30)

-E}
where QY = partition function for activated complex (A + B)+

QA = partition function for molecule A
Qp = partition function for molecule B

14




P = probability of reaction occurring
k, h = Bolizmann and Planck constants respectively
E* = activation energy

Na, Ng number densities of molecule of type A and B respectively.

For diatomic molecule-molecule collisions,
—_ Wt per) v)
Ba=Qp=F"F"F
) Try *~cv)
QT=F"Y FTF

where f‘é), f('y, f“’/ , are the translational, rotational and vibrational
partition functions.

Steady State Rates:-

For steady state rates, Eq. (64) is obtained (see Ref, 30 for further
details).

3.1.3  Experimental rates:-

In the determination of rate coefficients kg, ky at high temperatures, the rates
are assumed tc be of the form given by Eq. (64) and the values of P and s

are determined by the study of density profiles behind normal shocks in shock
tubes (for example Refs. 32, 33, 34). It appears that in almost all these
studies, by the time dissociation begins vibration has already reached
equilibrium with rotation and translation (for example Ref. 32, 33 ) whereas
in some experiments of Wray (Ref. 34) for dissociation of oxygen in an
oxygen-argon mixtire, there appears to be an overlap region where vibration
and dissociation are taking place simultaneously.

In a nozzle flow, there is simultaneous vibrational and dissociational non-
equilibrium. Thus the rate constants for dissociation as determined behind
shock fronts (which are essentially for vibrational equilibrium) are to be
modified for the vibrational nonequilibrium.

3.2 Vibrational reiaxation:-

The vibrational relaxation equation can be derived by using rate equations
which are similar in form to those used for chemical reaction by considering
the molecules in different energy levels to be different species, namely,

ks
ﬁd\ﬂ‘/qm% H; +ﬁ/) (65)

where A,, is a molecule in any vibrational level

%—?‘L]— = -%ﬁf[ﬁ/.][ﬁm]f%_}/ej[@][ﬁ”] (66)
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3.2.1. No dissociation:-

When there is no dissociation, one has to consider only Eq. (66) which may be
written

AR = _raa(3ke Lan]) 41 (FRS 1A])
=-TRlk, I+ TATRGIAT . o

The Landau-Teller equation for vibrational relaxation for a system af har-
monic oscillators in terms of the vibrational energy

E,=hyx LAl (68)

is obtained from Eq. (67) by multiplying by E. = Jh ﬁ and summing
. J
over the levels and applying the rules

/{Q\l\ =0 for 1 j-s) =/ (69)

%:‘\'3“ =J k.o . (70)
\ . Y
ﬁj):ﬁ\ =) kol:'(uﬂ)kloexp(_%?f- ) (71)

this gives d EV - 'OI "e"PGWT%](EV/“E V) (72)

= (,Ev,‘ E'Q/Z‘;

wherein a vibrational temperature Tv is defined such that
(A, 1= «xp(5h%m )
= xp (—d 0'/17 )
givine E, =k6[expt/ )]

(73)

(74)

and E/V is defined as
E/ =k6‘,/feyp(—%)-;] (75)

3.2.2 With dissociation:-

When dissociation and recombinatibn are occurring, one has to write two
16




more reactions,

A+ A= A+As (76)
which gives relaxation by exchange of partners, and

N
kg (77)
A+x = A+ ArX
Y %
N
which takes into account change in Aj due to recombination and dissociation

by collision with a partner X which may be an atom or a molecule. The
rate equations for reactions (76), (77) may be written as

dIAL_ 4 TATIAT kG TATIAS]

d[&)] Mzﬁjlx]*ﬁ U_}] [x] (79)

Thus the net change in [AJ:( due to all these reactions is obtained by adding
Egs. (67), (78), (79) as

LA AT Tk A TR ETATIA]

MH}W] IQJ][XJ + kr AT T (80)

Eq. (80) gives all the information needed for calculating the vibrational and
dissociational nonequilibrium provided one knows various rate constants.
As these rate coefficients are not known in the present state of knowledge,
the only alternative is the simplification of this equation under suitable
assumptions about the rate coefficients.

3.2.3 Experimental vibrational relaxation times:-

The vibrational relaxation times were found theoretically and experimentally
for a number of gases by experiments behind normal shocks (see Ref, 35 for
comparison between theory and e xperiment). It was found in general that
for diatomic gases the product T:, & where p is the pressure may be
written as a function of temperature (Ref, 36).

/Z:p =Q @XP (—thl/s) (81)

where a and b are constants and Tt is temperature,.
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It appears that the vibrational relaxation times calculated through the use of
Landau-Teller equation for expansion of nitrogen in nozzles are much shorter
than those determined behind normal shocks (Ref. 23). Treanor (Ref, 28)
using the steady state assumption( that is relaxation from an initial non-
Boltzmann like distribution) tried to see if this phencmenon could be explained,
but not with great success. At present nc further results are available cn

this point.

Some theoretical calculations were made by Alterman and Wilson (Ref, 37)
for vibrational energy transfer for atom-diatomic molecule collisions. Their
calculations show that the vibrational relaxation times for molecules,having

a given vibrational energy initially are substantially shorter than for the case
when the moleculs have no vibraticnal energy initially, Extending their
conclusions a little further by assuming that a similar result may be expected
for molecule-molecule collisions and also for relaxation from lower to higher
or higher to lower vibrational energies (as in shocks and expansions respec-
tively), there seems to be some theoretical justification of shorter vibrational
relaxation times in expansions than behind shocks even if one does not assume
relaxation from a steady state non-Boltzmann distribution of vibrational
energy. Unfortunately, the calculations of Ref. 37 are for /X,g — Br‘2
collisions and no relative values of the vibrational relaxation times for the
two cases are given. Also Wild (Ref. 38) has shown theoretically that the
relaxation time is also a function of the vibrationally excited state of the gas.

3.3 Model for the present calculations:-

For an exact calculation of the simultaneous vibrational and dissociational
relaxation, one has to use a system of equations of type Eq. (80) for the
several vibrational levels of the molecule. The problem is made more
difficult since none of the details of these rate coefficients are known. In
fact, in the literature, the reaction (76) of vibrational relaxation due to atom
exchange is not even discussed and there is no information on 7@“; s ;L- .
As for the other rate coefficients, only the overall rates, namely, Z; \/
the vibrational relaxation time where there is no dissociation, and kd, Kk
the dissociational and recombinational rate coefficients with vibrational
equilibrium are known. An attempt is made to simplify the set of simultan-
eous equations (80) to two equations, one for the net rate cf change of the
vibrational energy in a modified Landau-Teller form and the other for the net
rate of change of molecules or the dissociation rate equation in the form of
Eq. (54) where kg and k.. are modified, For example by taking the sum of
Eq. (80) over all vibrational energy levels, one obtains the overall rate
equation for the net rate of change of molecules. Multiplying Eq. (80) with
the vibrational energy appropriate to level | and summing over all the
vibrational energy levels one obtains the overall rate equation for the net
rate of change of the total vibrational energy.

3.3.1 Assumptions:-

The equation for the net rate of change of molecules in level j (Eq. (80)), may
be written in a slightly modified form as
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Ji— = ~ B INTIAT kglAT A1~ R IATTAT
THSTATY A - Zdj T Zrd

where Zdj and Zrj are dissociation and recombination rates into level j.

(82)

The assumptions made in simplifying this equation are:-

i) 'S = for‘ \\\\-S‘ =+ '
ii) kﬁ,&-\: 3&\0

. h?/
iti) ‘&&l\,\\lﬂ =(J+ko = G1)R, xp C37)

a a
iv) =
QQ\S ke
v) Z Q N N MCD'E' ) where Zo is the total number

of collisions per cc per sec per unit concentrations.

vi) Z er = Z km‘iﬁ]z&] - [A]Z{ijﬁr~ f—‘kr[;}]zlx]

-
vii) P. = e (> )/w where U is a parameter with
d1men31on\§ of temperature (see Appendix B for details).

Nj is the fractional number of molecules with vibrational energy Ej, which for
a Boltzmann vibrational energy distribution at temperature Tv is given as

e AT and N = 7 Nj, M(D-Ej) is the fractional number of colli-
sions with relative kinetic energy along the line of centres greater than or
equal to D-Ej, thus M(D-Ej) = @ - C’/k"} . C is a constant such
that, for equal efficiency for dissociation from various vibrational levels, it
gives the experimental value of probability P in the overall rate constant ex-
pression Eq. (64). For unequal efficiencies, that is () 2¢O . C is put equal
to one. Ky is the overall recombination rate coefficient obtained from experi-
ments behind normal shocks,

viii) kdg = AN kdm, that is the rate constant for atom molecule collisions
may be written as a factor times that for molecule-molecule collisions,

3. 3. 1.1 Significance and Limitations of the assumptions:-

Assumptions i) to iv) have a bearing mainly on the vibrational relaxation since
these are concerned with the rate coefficients for transition from one vibra-
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brational level to another vibrational level, and this will not alter the total
number of molecules and thus will not explicitly affect the dissociation process.
However, it will have an implicit effect since the number of molecules in any
given level is affected which in turn affects the dissociation rates Zdj.

I Vibrational relaxation:

Assumptions i) to iii) are made in deriving the Landau-Teller equa-
tion for vibrational relaxation of a h monic oscillator from an unexcited to
excited state with no dissociation, and they imply, respectively that

i) the rate for multi-quantum level transitions is zero,

ii) the rate coefficient for transition from level j to j-1 is j times the
rate coefficient for transition from the first excited level to ground level,

iii) the rate coefficient for transition from level jto j + 1 is (j +1)
times the rate coefficient for transition from ground level to the first excited
state which in turn is smaller than the rate coefficient for transition from first
excited state to ground level by the exponential factor of energy difference
between these two levels, namely h ) .

Under these assumptions, the vibrational relaxation time 7:, is
related to kjg and kpi, as (ref. 35);

‘GV/
—ﬁ:ﬁlo_éwzélo(l‘c T)

As long as one uses experimentally determined ,L\,, these assump-
tions should not affect the results unless the form of the vibrational relaxaticn
equation itself is affected by modifications on these assumptions. However,
there is the possibility that the vibrational relaxation time obtained from
experiments behind normal shocks may not be the same for expansion flows
where the relaxation is from a higher to lower excited state as is already
discussed in Section 3.2.3. Expressions for kjy taking into account anhar-
monicity and vibrational-vibrational energy transfer were given and discussed
by Treanor (Ref. 28). It was shown there that this increases the dissociation
rate for flow behind normal shocks compared to these obtained by using the
Landau-Teller expression for kjg.

Thus, in the present work, ZT, was shortened from its normal
shock value to take this factor into account.

The significance of assumption iv) is that the vibrational relaxation
by atom exchange is not important, This assumption may be quite appro-
priate when the number densities of atoms is quite small and when the vibra-
tional excitation is not very high, This is so since this kind of atom exchange
is possible when an atom comes within the range of an excited molecule in its
outward vibration such that the nearer atoms may form a deexcited molecule.

20




-

Thus for the flow behind a normal shock where the overlap region of vibra-
tional relaxation and dissociational reaction is small, this exchange reaction
may be considered insignificant, However, for expansion flows of a disso-
ciated gas, where there are sufficient number of atoms, this reaction can be
quite important in deexciting the gas., This could have been taken into account
by making use of the expression for kj+1 j postulated by Treanor (Ref, 28),

namely, a R | %
Js =0 for st

Ry 4
p LB T )T (00 5m%) 9
KH\J\;_C\J "Wy To (/- e‘“’%)
Where A;, Ag are constants, A is the reduced mass of the colliding mole-

cules, and Wj=Ej+1-Ej where Ej+l, Ej vibrational energies for levels j +1
and j.

Since the introduction of these rates would complicate the calcula-
tions, this was not done, The effect of this exchange reaction will be to
decrease the vibrational relaxation time. Thus shortening the vibrational
relaxation time Tv from it s normal shock undissociated value would be
able to take into account this factor on an overall level.

II Dissociational reaction:

The effect of assumptions v) to viii) is on the dissociation reaction.

Assumption vii) gives higher probability or efficiency for dissocia-
tion to occur from higher vibrational energy levels whenever U is finite,
For U =00 , it gives equal probability for dissociation from all vibrational
levels. Though the equal probability assumption is not realistic, it will also
be used since it would remove one extra parameter from the problem, and in
those cases where the value of U is not important, putting U = OO  will
simpilify the calculations considerably,

Assumption v) contains a factor M (D-Ej) which is the fractional

number of collisions with an energy greater than or equal to (D-Ej). In the

most realistic model, one has to take into account in writing this expression,
not only the kinetic energy or translational energy of the colliding molecule,
but also the vibrational and rotational energies, It was already pointed out
in section 3.1, 2 that taking these internal energies into consideration will

. multiply the exponential factor by (D-Ej/kTt) 5/.5/ where S 1is 0 for atom-

molecule and | for molecule-molecule collisions for vibrational and trans-
lational equilibrium, Thus

-(D~&; )k

. /KT

M (D-E;) :(D—ﬁ-:,/q;) 1 & t

for vibrational and translational equilibrium and taking account of all energies.
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" With this expression for M (D-Ej), the coupling factor will be modified as
shown in Appendix B and will comp licate the calculations. Thus for simpli-
city the contributions of internal energies are neglected, giving

M(p-£,)= e PG

Assumption vi) means that the recombination rate coefficient is not
affected by the vibrational nonequilibrium, This is reasonable since recom-
bination is achieved as a result of collision between two atoms and a third
body and, in the model where only the translational anergies are taken into
account, it does not matter whether the third body, if it is a molecule, is in
vibrational equilibrium or not. However, if one takes into account the vibra-
tional and rotational energies also, then the kyj for a molecule as a third
body should be modified, while for an atom as a third body no changes are
required.

Assumption viii) means that the dissociation rates with molecules
or atoms as second bodies are different. This seems to have been borne out
from the experimental results of Byron (Ref. 33)., The value of 2\ is :_’igL
as derived in Appendix B from Byron's experiments. >

3.3.2 Dissociational rate equation:-

Under the above assumptions the rate equation for dissociation may be written
as (See Appendix B for details)

Dot ke ff (/ o<+.2>« <) [yK Ma. (""‘/] Hve-1] (s

Dt —
where X is atomic mass fraction,
k. is the recombination rate constant obtained from normal
shock experiments,
P is the density,
mg is-the mass of atoms per unit mole

K= kde‘%Ar is the equilibrium constant given by Eq. (B85)
am) &) is the coupling factor due to vibrational nonequilibrium such

Q (T)Q(‘U) that kg = A% kd €q.

Q's are vibrational partition functions with appropriate T,

Il — _1 / [
_ - (85)
T T A U

Y =k, P2 (1-o +2p )X T (86)

_ Ma (1=
[ = Kfz i (87)
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3.3.3

Vibrational relaxation equation:-

The rate equation for the net rate of change of the vibrational energy per unit

mass

gv may be written as (see Appendix B for details)

ve, _ &8 - (E-EDNRVL G-E) *-

Dt

where

Tv ("”é) ! ("KS

£, is the actual vibrational energy per unit mass

fw is the vibrational energy per unit mass calculated at
translational temperature Ty

E is the average energy lost per dissociation = £(T;)

G is the average energy gained per recombination = £(~U)

£€'s  may be written as = ZE exPCE; /kT/QIzT) with the
appropriate temperature T.

7; vibrational relaxation time

BASIC EQUATIONS OF MOTION

The basic equations of motion are:

Mass: Df + /’du/g =0 (88)

Momentum: 2& +% gmdp__o (89)
. _ DP —

Energy: IDZQ_. # 55 = o (90)

State: P =FRT, (1+ <) (91)

Enthalpy: h —’-R]' TRU-A)E fﬁa‘@—h@(T 0} (92)

Rate: dissociational % =¥{vi - i/' {83)

vibrational Dg _ £e~& _MILIE-E), VE-&)) (99)
Dt T, (1-e¢) (-2t

Where p, , ?.’ , o¢ , Ty, £,, hare pressure, density,

velocity, atomic mass fraction, translational temperature, specific vibra-
tional energy and specific enthalpy respectively. The equation for specific
entropy variation and the expression for specific entropy are given in Egs.

(A36),

(A18). , V, L, E, G Z' are defined in Section 3.3. The
Y,

differential operator is -,ﬁ— = -51— + ?o grad. For steady, oné-dimen-
sional flows —%— Z, where g- is the speed and x is the coordinate

- in the flow direction. For steady, adiabatic flows, the energy and momentum
equations give along a streamline,

2
h + —éL = ho = constant (95)
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For flow from a reservoir, ho is the same on all streamlines,

4,1 Dissociational models:-

Eqgs. (88) to (94) are the equations to be solved for the problem of simultan-
eous vibrational and dissociational nonequilibrium of a pure dissociated
diatomic gas. It would be of interest to compare the form of these equations
with those for the various dissociation models referred to in the introduction.

Namely:
i) Ideal or Lighthill dissociating gas model.
ii) Vibrational equilibrium - dissociational nonequilibrium model.
iii) Uncoupled but simultaneous vibrational and dissociational
nonequilibrium model.
iv) Coupled vibrational and dissociational nonequilibrium model

with (a) equal efficiency of dissociation from all vibrational
energy levels; called the non-preferential model, (b) higher
efficiency or preference from higher vibrational energy
levels, called the preferential model.

Now these various dissociation models will affect the form of the rate equa-
tions (93) and (94) for vibration and dissociation and the enthalpy expression

h in Eq. ¢92) but will not affect the form of the equations of mass, momentum
and energy, that is Eqs. (88) - (90), and the state equation (91). The dissocia-
tional models fall into two distinct types, namely those which assume vibra-
tional equilibrium, that is cases (i) and (ii); and those which assume vibra-
tional nonequilibrium i. e. cases (iii) and (iv).

4,1, 1 Vibrational nonequilibrium models:-

4,1.1.1 Coupled Preferential dissociation model:-

For simultaneous nonequilibrium in vibration and dissociation, the coupled
preferential model is the most realistic postulated here provided one can
prescribe the correct value of the parameter U,

It should be recalled however that it has been assumed that the vibrational
nonequilibrium process cambecharacterized by a vibrational temperature T, -
which differs from the translational temperature Ty, and that this assumption
implies a Boltzmann distribution of vibrational energy. For the flow region
behind a normal shock advancing into an undissociated gas Treanor (Ref. 28)
has shown that a more appropriate model would be that of vibrational relaxa-
tion from a steady-state distribution which is non-Boltzmann. This is so since
initially only dissociation occurs since there are no atoms to recombine, thus
depleting the upper vibrational energy levels and thus producing a non-Boltz-
mann distribution. However, Treanor points out that as soon as the recom-
bination gains importance this unbalance is removed and a Boltzmann distri-
bution in vibration is restored. Thus for the expansion flow of a dissociated
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gas which is initially in thermal and chemical equilibrium, the recombination
process is as important as dissociation and thus the model of vibrational
relaxation from a Boltzmann distribution in vibration appears to be quite
good, For this same reason, prescription of U as a solution of Eq. (B65),

namely
O
e’ Z,
Qu) aT" Q(T,;)
for expansion flows is quite realistic, This relation is obtained by equating

kq from the present model for Tt = T, with the experimental kg measured
under vibrational equilibrium conditions.

(B65)

However, as the solution of this equation for U is involved, a value of U = -%

was used following the suggestion of Treanor and Marrone (Ref, 21). This
value of U gives higher efficiency or preference for dissociation from higher
vibrational energy levels as

6,.
Gy _ eli--5)

P=c

which is plotted in Fig, 1.

—C

This model is called coupled since the effect of vibrational nonequilibrium is
taken into account in the dissociational rate equation (93) through the coupling

factor V ] Q (T4 Q (Ty)
Q (Ty) Q (-U)

where the dependence on T, and U is clearly seen. It can be shown that

V 2 1 in the expansion flow since T, 2 Ti. The implication of this may

be better appreciated by recalling that by definition, V = /6 , sothat V> 1

implies that the nonequilibrium dissociation rate is greater than or equal to

that for vibrational equilibrium. Physically the observation T,, > T; means

that there is more energy in vibration than when T, = T so that the molecules

are more easily dissociated, Hence kg > kdeq," Also by substituting for
ﬁdvcbe . efg from Eq. (B63) and for V, one obtains for the dissociation rate

constan% under vibrational nonequilibrium

kq

V‘%dv\‘be%
Q) Q) % o"%% Gty
() Qc-U) ®z)

_% _
e QT) G
2t c F
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= kg (Te.T,, U)

thus showing that kj is not only a function of Ty and U as in vibrational
equilibrium, but also a furction of T,

The effect of dissociational nonequilibrium on vibrational nonequilibrium is
taken into account by the last two terms of Eq. (94) which are the vibrational

energies lost due to dissociation and gained due to recombination respectively.

4,1, 1.2 Coupled nonpreferential model:-

In this model it is assumed that dissociation occurs with equal efficiency or
with no preference from the various vibrational levels. From the form of

the efficiency factor -(D- EJ ) /k U

P =
J

it will be seen that putting U = ©© makes Pj=1 for all j. Thus the model
with U= 0o is called the non-preferential coupled dissociation model.

The coupling factor V simplifies in this case to
v . 8n) QT
Qcr,) N
— / _
where '—7-,-% - —+v_ B ol and N is the total number of vibrational

N . r
levels. This is so since

{ - ! = [ _ 1 = _!
T, %R U T T
& —
and Q(-U) Z (o J/kU == (=N
j J
The average energ1es lost in dlssomatlon and recombination E and G, simplify
Ze S22 Z - "/”Tm )
Y &,
= ;‘ZE‘}@ d/(U ZEJ
G =l prmmnnt
ZeEJ/A’U N

In this case also V 2 1 since T, Z T;. But it is difficult to say if V in the
nonpreferential case will be greater or less than V in the preferential case.
However, one can say that E and G, for the nonpreferential model will be
less than those for the preferential model.
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4, 1. 1. 3 Uncoupled Model:-

In the uncoupled model, it is assumed that vibrational nonequilibrium has no
effect on dissociation and vice versa., In other words V is taken equal to

unity and the net effect of the last two terms in the vibrational rate equation
(94) is considered to be negligible. This will be reasonably true only for
vibration and dissociation very near equilibrium. Then the number of disso-
ciations is roughly equal to the number of recombinations and so is the average
energies lost or gained. However, where vibration and dissociation are eufii-
ciently out of equilibrium such that one of them predominatess this will be &
very poor approximation.

The rate equation for the uncoupled model will thus be

Dy _ -
D=y (L)

DE, o — &

Dr

T
v

4.1, 1.4 Limits on the coupling factor V:-

In the normal shock case where T, is always less than T, V always lies
between 0 and 1.

However for the expansion case T, is greater than T and may in course of
time freeze thus increasing the difference between them. Thus to start with
V& 1since T, = T, . If the proper relation between Tt and U given by
Eq. (B65) is used, then

alr) QL) _ &%) Ah) =z

V = a—
&LT,) Q) g(T,) 4;;”@(7;}3-%
noL N/T. )
R P 7T - A
a 7; c 62(7;/

where n is positive. As Ty goes on decreasing and T, remains constant, it
would appear that V should ultimately tend to zero after reaching a maximum .
This is necessary to be consistent to be with the concept of freezing. This
situation should be the same for preferential or non-preferential models,

4. 1. 2 Vibrational equilibrium models:-

For vibrational equilibrium EV drops out as an independent variable since
Ty=T, and Ew = &, and thus, the vibrational rate equation

D&y - Ea,"f‘,
Dt Z\;
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would simply be a function of T,. This situation occurs in the limit T’—a—-o

The ideal dissociating gas case is a further simplification of this model and
is discussed in great detail in Ref,. 5.

4.2 One dimensional Flow:-

For ore dimensional, steady flow through a nozzle, the continuity equation is
replaced by

/’?A = constant = m‘&e (96)

where A is the area of the nozzle at a given section x. The determination of
thig constant /mmw discussed below in Section 4. 2.3. The solution of this

flow problem may be conveniently carried out by a system of three algebraic
equations, (Eqgs. (96), (95), (91), for mass, enthalpy and state), and three
coupled ordinary differential equations for Ty, £, , X . The equations
for 8‘,- and (X are immediately obtained by replacing the operator,

b Y f jd; 4o obtain

%(VL 1/ (97)

Q|§ Qo

dE, _ 1 Ep-E wnlE-&y L VG-£) |
dx  ~ 7 7, (/—cx/‘/-* (/—d// (98)

The derivation of the equation for Ty is straightforward. The mass, momentum,
energy equations are

| .df /dg ) dA

Fax g dx t T ax = ° (99)
d ¥ ! 4P
dx T 7 dx =° (100)

dh dP__ dl. &, dot
dax Fdx he o x Gt by t

From state equation

_dﬁ-—_idff | 4T, [/ dlex (102)
Pdx ~ f dx 7, d= 1400 dx

From these four equat1ons W; Wﬁ gf can be eliminated léading
to the equation for Tt—
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?Z
de—.- L dA / da( -/-/

= TlHR) ~ ;

2T -6 18 )55 40
17 Fu (- Mz)(z %) A dx /ﬂl dx ) ) (103)

where M'F is the frozen Mach number given by
z :
M ; _ ,%fj (104

and a is the frozen speed of sound given by (see Ref. 5)

“tn

2 7134 (105}
a; =52 RI, (1)
The solution of the flow problem is completely given by solving Eqs. (91),
(95), (96), (97), (98), (103).

4,2.1 Effect of the various dissociation models on quasi-one dimensional
Flow equations:-

It is already shownin Section 4. 1 how the variocus disscciation mcdals medi-
fy the rate equations for vibration and dissociation. For one dimersionai
flow, the right hand side of Eqs. (97), (98) will be simplified in the same
way. In addition, for the vibrational equilibrium model, in the expression
for the enthalpy given by Eq. (92), the vibrational contribution &, wiil nc
longer be an independent variable and thus in Eq. (101), the term o £y

. dé&, a7 . . ‘o dx
may be written as T which simplifies Eq. (103) to
. dx
2
arn_ _ Z /s
where Pyz is the partlally frozen Mach number referred to the partially
frozen sound speed Qz , l.e. -2 _ >
_l_
2 /=4
= e RT, (1+o¢)

a, =
7[ '570( -+ (/.’(/Tff

For vibrational nonequilibrium model, Eq. (103) is not changed in any way.

i. e. it is only the frozen Mach number M that enters in Eq. (103) and
the %%; term remains inside the bracket on RHS of Eq. (103).

4.2.2 Isentropic limiting flows:-

One can further consider some limiting flows which are isentropic and
which can be calculated as the solution of a system of algebraic equations.
These are:
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i) Vibration and dissociation frozen, or fully frozen case,

ii) Vibration in equilibrium with translation while disso-
ciation is frozen, or partially frozen case,

iii) Vibration and dissociation in equilibrium or full
equilibrium case,

iv) Vibration frozen while dissociation is in equilibrium,
or partially frozen case.

In all these cases it can be shown that the flow is isentropic. It is doubtful
if case (iv) is ever realized for real flows. Thus only cases (i) to (iii) will
be considered. In all these cases, whether vibration is frozen or in equili-
brium it drops out as an additional variable since for frozen vibration Ty
is constant while for vibrational equilibrium Ty = T, . When dissociation
is also frozen (¢ also drops out as a variable since it is constant while
for dissociational equilibrium, one has the additional relation between o< ,
[ , Ty given by (A34) in Appendix A. Also since the flow is isentropic
oné can use the entropy equation given by (A18) in Appendix A as a further
relation between o¢ , Tiand T v - This entropy equation is rederived
as an integral of the differential flow relations for cases (ii) and (iii) in
Appendix C. Thus these limiting cases can be calculated as a solution of the
following set of algebraic equations:-

Mass f §A = constant = mc

energy A7 2&:—_ h, = constant
state /0=,0R7;u+a<)
enthalpy A= _lz’ﬁ(_ﬁ‘]@ (12 )RE, + Rx G,

dissociation Heo 2/ y T "497{‘-/ ‘Q/f—
e _:_,02_.(_5;_} (- )f ¢

equilibrium [ —de

entr S-S _ 2K _ (=)& 4 o7,
TR z 7y, 2% tr-Yl-c""%)

Thel |52 E 1~ & ) Wt Lot) | =Larstt

For dissociational equilibrium, the last term in the entropy equation is zero
since the expression logarithmic term becomes zero.This may be seen from
the equilibrium relation for £

It may be noted that this relation derived in Ref. 8 is in error due to the
omission of the (1- ¢) &, /Ty for vibrational and dissociational equilibrium.
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Thus for dissociational equilibrium,

& 6 - _~§9
R -2 7 Te 2&30—074/ /U/f""’/"

For frozen dissociation, all terms containing ¢ only and constants like

fp , 5-y , etc. can be incorporated into S, , thus giving the relation
between /’ and Ty as

S‘RS’: - 5;'?(/? 7;_ + {/-—ul) f;v _%_e'&/?]_(/*d)z%)ﬁ~= Caﬂ&‘l@”f_—, %
where S/ =S, +R[372°-( - 2ot bapot = (1-o4 ) Lap (- )~(14% ;‘; -24g 7;]

The constants %— can be evaluated for the reservoir conditions. These
entropy equations are the same as those derived ir Appendix C starting from
differential flow relations,

In order to complete these equations one has to determine the critical mass
flow m:: . For these limiting flows another algebraic equation can be ob-
tained by requiring that at ZZ = 0, the Mach number (referred to frozen,
partially frozen or equilibrium sound speeds discussed in Ref. 5 in the
respective cases) be unity. This is so since in all these cases Eq. (103) can
be shown to simplify to

2, 44
dTy § & ax
dx — G-t) by,
dé d
Where M is the appropriate Mach number. The ';';;'K ) dx terms

in Eq. (103) either drop out (for the frozen cases) or are incorporated in
dn/qw term (for equ111br1um £, &, arefunctions of T,). Thus for
M=1, if the derivative /x is to be finite, d’%x should be zero,
that is - when dA  _ ( (at the throat) the Mach number is unity.
dx

This algebraic equation is derived in Appendix C for partially frozen and
equilibrium flows. This equation along with all the other equations except
the mass continuity equation determines the critical conditions from which
the critical mass flow is obtained.

4.2, 3 Determination of mass flow under nonequilibrium conditions:-

The determination of the critical mass flow is not as straightforward as in
the limiting flows. The location of the point where the Mach number becomes
unity cannot be a prioridetermined as in the limiting flows. For, from

Eq. (103), '

i & dfl ;s do )25
dx —[,./Z_Z)JLZ&%, //'-)La’/ 2 7_/{(/#9 f)[ Z/;r VZ/
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one can only say that when My = 1, the expression within brackets should

be zero if thAx is to remain finite, Since this expression contains d%( ,g—;-(
which themselves depend on the past history of the flow in the subsonic
portion of the nozzle, the point where M, = 1 occurs can only be determined
by obtaiming a complete solution to the problem. However, it can be shown
by a simple argument that the point for which My = 1 occurs downstream of
the throat., We can define a local equilibrium Mach number by using the
equilibrium sound speed calculated using local values of o and T determined
for the nonequilibrium flow. This local equilibrium Mach number is unity

at the geometrical throat, (Ref. 41).

Since the frozen Mach number is less than the equilibrium Mach number,
the point for which My = 1 must be downstream of the throat.

Thus the nonequilibrium critical mass flow lmxc has to be determined by
an interation scheme which uses the mass flows for fully frozen and equili-
brium cases as limits. This iteration is done by first choosing for M),
a value between mg (frozen)and Mg (equilibrium) and then calculating

the nonequilibrium flow up to some point downstream of the geometric
throat. If the initial value chosen is less than the critical value, then Mg
reaches a maximum value which is less than unity and then begins to
decrease; if this initial value is greater than the critical value, then M;¢
reaches a valué greater than or near unity and integration no longer can
proceed forward,  In the former case, a new larger value for Mye is
chosen and in the latter case, a new smaller value is chosen; and the cal-
culations continued until these two limits coincide, This procedure gives
the nonequilibrium critical mass flow and the point where Mg = 1.

Now it is not possible to carry a numerical computation thréhgh the frozen
sonic point in any nozzle flow calculation, This applies to perfect gas flows,
as well as nonequilibrium flows., The reason is that at the critical point
quantities like dT. /dx approach the form o / o. One simple way of
surmounting this problem, and it is the one that is used here, is to apply
small discontinuous jumps to all variables to carry them through this point,
This is further discussed in Section 5 and Appendix D,

4.2.4 Initial conditions for starting nonequilibrium flow calculations;-

The implication of the limiting flows on the rate equations is as follows:

For instantaneous equilibrium of vibllation and dissociation with local
conditions, the Egs. (97) and (98) simplify to

—_ ¥ /Y la e _
=4 w-= 3[ Kfé/’ [:g -1]= —%"‘0
dé — =6 (G-E)yVL—1) o
aIx R, g -</ L

and

32




L déy : - ax
but and “F# are not zero in equilibrium flows. Thus for gx and

dé&y to remain finite, 3/76 and 69& should tend to zero. However,

I > apand 7., are always finite since they involve only the ratesof reaction
Ld v y y y

and of relaxation.

Thus ,3: —'0 and 7 Z"/ ——0

can happen only for q—0. However, for any q different from zero, these
conditions are realized only by making #—m~w and 7, —>=0. Thus the
instantaneous equilibrium assumption for a flowing gas implies infinite
rates such that ¥ —— @ and Z; —_—O

Similarly for the frozen limit,
X
—g,’;;—: o :—}E—U/L -1/

A& _ o — Em-t _ WU éf—&/+ ¥ -E&)
da {7 ge-) gl
The quantities VL-1, £ -g, VL(E-Sy f(_/‘_% all differ from

Zero. et
ot _ dé _ . :
Thus —gx = g% = o can be realized only by making
/

7 £z,

Again ’y and Z;, being finite in reality, this limit is possible only for
q ——o00 that is for infinitely accelerating flow. However for any finite
q, one may interpret these conditions to mean ")”, —74,- —- (0, in other
words zero reaction and relaxation rates, v

From this one may conclude that starting from the reservoir, the flow will
begin to fall out of equilibrium slowly as g /) and q Z7 become appre-
ciable (as q increases slowly from zero in the reservoirsl and will begin to

freeze as soon as q becomes large enough for 'V/g, and %?— to be very
near zero. v

Thus the transition from equilibrium to nonequilibrium and nonequilibrium
to frozen is nonuniform since in the first case Y and 7, change from
infinite values to finite values, while in the second case, they change from
finite values to zero. This transition from equilibrium to nonequilibrium

is a problem which one encounters in the calculation of nonequilibrium flows.
For finite rates, starting nonequilibrium calculations from equilibrium
initial values of o/ , T 7; yield

dXJ_ra&, g, ;i
42 oo =Ll 15T, waldE]

‘7 7, ( /—Me;)

#%ﬁ ¢o4)
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thus giving a discontinuity in the derivatives while the variables themselves
are continuous. When the flow is very near equilibrium, the derivatives
rapidly reach their true values as is seen in Figs. 4c, 4d. This procedure
was suggested in reference 14 and is adopted in the present work.

o. SPECIFIC CALCULATIONS

With the thermodynamic and collisional models discussed in
the earlier sections, two sets of calculations were made for the flow of
pure dissociated oxygen through nozzles.

5.1 Aims of the Calculationsz- ,

The first set of calculations were made with the following aims:

i) To find out how much nonequilibrium calculations started
at a point downstream of the geomeiric throat, where the frozen Mach
number My is slightly greater than one, differ from nonequilibrium calcu-
lations started from a point well upstream of the geometric throat,

ii) To find out if, when the gas is highly dissociated (for example.
atomic mass fraction o¢ = 0. 95) so that the vibrational energy is very smal
when compared with the energy in dissociation, calculations made under the
assumption of vibrational equilibrium will in any way affect the atomic
mass fraction.

iii) To study the effect of the parameter U, that is the efficiency
factor for dissociation from various vibrational energy levels.

For these calculations, with To= 59000K, two values of p,, 82 atm and
9. 4 atm were chosen. For the purposes of this study, an axisymmetric
hyperbolic nozzle with the area ratio variation given by

A=/ +4) (106

was chosen, since calculations with vibrational equilibrium are available,
Two values of U were chosen, namely U= @ and U =. @/6 . The value
U = corresponds to equal efficiency of dissiciation from all the vibra-
tional levels, while U = 60/6 gives the efficiency variation from level to

level as ) 60 b )
_ oTPE A _ 0%,
F=e ‘ =C ° o)
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The calculations for (J =o0 and (J = 01:/@ correspond to the coupled
nonpreferential and preferential dissociation models respectively, where

"4 = &/

II. The second set of calculations were carried out for experimental condi-
tions obtained in the UTIAS 11" x 15" Hypersonic shock tunnel for pure
dissociated oxygen flow given in Table I. A sketch of the tunnel is given

in Fig. 2 and the area ratio variation of the primary nozzle is given in

Fig. 3. The nozzle geometiry was divided into five sections and a fifth
order polynomial fit made for each section. The coefflclents are given in
Table II. They were chosen so that the gradient dA/dx  as well as

A was continuous at the junction points.

The flow through the corner expansion fan of the deflection plate and the
terminal wedge nozzle were found to be frozen, thus allowing the use of
simple isentropic relations based on the frozen values of T, and o<

at the end of the primary nozzle., Boundary layer corrections were applied
in the primary nozzle under the frozen boundary layer approximation using
the formula for boundary layer displacement thickness given by Burke and
Bird (Ref. 39) for turbulent flows, namely

* -0,3
_;(}_\_:014?( /‘I’“?c%r) o

where )0,. and /ﬂ,\ are evaluated at a reference enthalpy A, given by

(108)

h, = 022 (h,~he) + 03 (hw? he) 109)

where subscripis r, o, e, w refer tc reference, stagnation, edge of
boundary layer and nozzle wall values. The nozzle wall was taken to be
at room temperature The viscosity of pure dissociated oxygen is calcu-

(a3 w1l
lated from the Sutherland modcl as given in Ref, 40, namely,

My, =170 51072725 (14 1385)" I Vem S

(110)

The aim of these calculations was:

i) to find out the effect of variation in the vibrational relaxation
times on the flow properties;

ii) to consider the effects of slight variation in p,, T, values,
keeping one of them approximately constant. This was necessary because
the stagnation pressure behind the reflected shock in the reservoir upstream
of the primary nozzle showed variations during the test period due to over-
tailoring, making it difficult to give a proper T, from the measured p and
incident shock Mach number. This p_  was alwaya less than that predlcted
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TABLE 1

Experimental conditions for the pure dissociated oxygen flow in the n" x15"
UTIAS Hypersoric Shock Tunnel.

Terminal nozzle entrance 11" x 0, 4"

1% Ms F%ﬁw- lemo ﬁ"&ﬂi F%z&ﬂ* Toa
(mmH, Catm) (*°K) (atm) (at+m ) (°K)
25 8.03 23.13 4040 19, 05 20, 82 3960
25 9,62 40, 82 4630 34. 01 39, 46 4600
10 9.63 16, 67 4350 12.93 14, 18 4210
10 11, 00 24. 49 4800 19,73 22.10 4750

- - 22, 45 4600 - - -

p; = initial pressure in the channel
Mg = shock Mach number
PoTheo Totheo - Calculated by equilibrium theory from p; and My
POlexptl, P02expﬂ = two plateau values experimentally observed
due to overtailoring
To2 = calculated for B, t1. from Totheo,, and Poypo o under
the assumption of isentropic compression.

See Footnote

Footnote:

Due to reflected shock boundary layer interaction, the conditions immediately
behind the shock are different from those given by theory for given p; and

Mg. Also, whenever there is perfect tailoring the pressure trace for the
pressure behind the reflected shock should remain constant until the refilected
head or tail of the expansion wave arrives at the nozzle end of the shock

tube. For combustion runs, the range of tailored shock Mach numbers is
limited for given driver and driven gas combinations forcing one to use
over-tailored conditions to obtain higher shock Mach numbers. Under such
conditions, one observes a pressure rise due to the compression waves
produced by the reflected shock-contact surface interaction, Under the
assumption that behind the reflected shock all processes are isentropic,

one can calculate Ty), Tog from R, and experimental P, and P42,
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TABLE II

Coefficients in the polynomial fits for the area ratio variationcof the UTIAS

HST primary nozzle:

range of a, a; ag ag ay ag
% (inches)
-1.2 € x<-0.8 [-49.84334 |-158.4928 |-156.5498 |-55.48355 | 0O 0
-0.8< ¥=<-0.4]-5.399903 | -36.54116-59.99915 |-38.54122 | 0 0
-0.4 £%$-0.11 1.0 0.4166667 |-21.61491 {-14,32370 | O 0
-0.113 ¥<l.2 1.0 0.4166667 0 0 0 0
1.2 IX*3I3.0 ([0.70009936{0.55533466{0.11590198 |0.03854181 | O 0
3.0 $¢<5.4 |-6.1320435/0. 5971668 |-0.9679386/0. 09266074 0 0
5.4 X315 | -14.637513 |6, 4113094 |-0. 4268819 (0. 02090338
—0. 0005340
0. 00000515
A
AxT20F a1+ ag %2+ aggS +ag ot + a5 R

Ax = 0. 36"
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on the basis of initial channel pressure and shock Mach number.

iii) finally, to give the flow parameters in the test section, in
particular the atomic mass fraction so that comparisons can be made with
some experimental measurements of atom concentration currently being
made in the UTIAS hypersonic shock tunnel (Ref, 45).

The results of these calculations are plotted in Figs. 4 to 10. Fig. 11 gives
a comparison between theory and experiment of test section static pressure.
Table IV gives the comparative values of Ty , Ty , X s P

and P at the end of the primary nozzle, after the deflection plate and

in the test section. The effects of variation of the vibrational relaxation
times are given and also that of the boundary layer corrections.

5.2 Expressions for rate constants:-

In all these calculations, the expressions used
for recombinational rate constant ky and the vibrational relaxation time
’C’V are those given in Ref, 13:

_ - 212
k, = exe(51.69090) T em®/mole % sec. (111)

P, = 20308, 092 exp (- 0Lhtnt T) dynes sec/em” (112)

Glass and Takano (Ref. 5) in their calculations of nonequilibrium flow of
pure dissociated oxygen around a corner with a vibrational equilibrium
model have used a constant value of ky = 0,67 x 1015 cm®/ mole? sec in
the temperature of range of 2500°K to 40009K. Since in the present calcu-
lations, the temperature range was much larger, say, starting with about
50000K in the reservoir to about 700°K at the end of the primary nozzle,

it was considered necessary to use a more realistic temperature dependence
of kyr so that the above expression is used. To take into account the unharmon-
icity for oxygen vibration, the partition funciion and the vibrational energy
are written as sums and the vibrational energy for level j is taken to be
given by

, ' RY- -
E, - /5¢0.36 1 Qra)-/:{-o?s (+5)% oose (¢ ) ~747.067 em™ (113)

from Ref. 22, The equilibrium constant K. used in the rate equation (84)
is given by (See Appendix B, Eq. (B85) )

SR ERe N
v

which can be derived from Eqs. (60), (A34), (A31), and (A14). From the
oxygen dissociation experiments of Byron (Ref. 33) , the relative efficiency
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of oxygen atoms and molecules is found to.be

Kd — 5 —a= T
TKaa N DG (115)

and this value is used in all the calculations (See also Appendix B).

5.3 Procedure for numerical ‘calculations:-

It was already pointed out in Section 4. 2. 3 and
4. 2. 4 that the integration of the nonequilibrium equations poses three pro-
blems: (i) starting conditions, (ii) determination of nonequilibrium mass
flow, and (iii) passing through the critical point Mg = 1 and these were
considered in a general way. The specific procedure used is outlined below,
As was discussed in section 4, 2, 4, the starting conditions were taken to be
- equilibrium conditions with discontinuities in derivatives,

5. 3.1 Nonequilibrium mass flow

The critical mass flow i} for fully frozen flow is greater than
M, for equilibrium flow, The evaluation of the nonequilibrium critical mass

flow must be done only for nonequilibrium calculations starting upstream of
the geometrical throat, For nonequilibrium calculations starting downstream
of the geometrical throat, the mass flow is that of equilibrium flow since up
to the starting point, the flow is considered to be in equilibrium, Thus for cal-
culations starting upstream of the geometrical throat, initially a mass flow
somewhere in between hie and my is chosen and is written as

'm,(e, s acacm nel X m'e

which defines facmne 1 from the chosen Myeg and known me  and my are given
as lower and upper limits for /)’Y],(e . With this MXe| , the starting or initial
conditions are calculated as a solution of the algebraic equations for equilibrium
flow, With these initial conditions and the mass flow Mye, , the equations
were integrated until either M@l or Mg = Mf 1,5 < 1 is obtained. In the
former case facmne is incredsed such that

(facmne)2 = 1/2 ( (facmne) 1 + ¥ )
Mhe |

while in the latter case, it is reduced such that

' 4
(facmne)2(= 1/2 ( (facmne) 1 +mf/1i"nxe1 ) where facmne2, facmne 2"
are the new values of facmne.

and new upper and lower limits on inge] are given as

Mres < Mae < Mp
when Mg .. < 1 and

when Mf & 1. In the next step similarly a new facmne is calculated. For
example, if the first two iterations give a (facmne)l for which Mle and
a facmne 2 for which Mf max < 1, the new (facmne) is taken as
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facmne = 1/2 (facmne 1 + facmne 2)
with the 1limits on facmne as
facmne 1 < facmne << facmne 2

which mean that

facmne 1. mre < mxe < facmne 2 m,

This iteration process was continued until facmne 1 and facmne 2 differed
in their last significant figure used in the computations (in the present work
it was the eighth figure). In other words, in the final case

facmne 1 - facmne 2 = 1 x 1077

This determines m,, and the critical point,

5. 3.2 Passing through the critical point Mf = 1

In the perfect gas case, the only equation to be integrated is

dle __ G 4 9%dx

dx — hr (1= M?2)
Since for expansion in the downstrefm part of the nozzle M > 1 and

< 0, one can pass through the critical point by taking x > o and a Ty
< T,* where T x* is the throat value which could be determined a priori.

The same can be done for the equilibrium or frozen gas flows since M=1
is again obtained at x = 0 and T*, ¢ * are known a priori, However, in
the nonequilibrium case, the point where My = 1 is approached only as a
limit, and also Ty*, T: “, oL * are unknown. Thus one has to give a set
of values &Xx , ATt » aT, » & ¢o¢ and do the calculations for

sz:Tf +aTe

S 7;,1447;?
oo’ t S
X/+AX

1 H

where o7 , o’ T/ , 7;/ are the limiting values obtained for

the lower limit on /}, . This has to be repeated until the calculations
proceed forward giving supersonic flow,

Another interesting situation was found with regard to the behaviour of the
numerator and denominator in th/dar

Let SUM and DIFF denote

L dA_ I
SUM =2 dx ~ 7 > 7L(r(/w fj?r &) g
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DIFF = | — M;

For all (mxe such that M)CMM< | , SUM changes from negative to positive
values smoothly as one passes through the point where M_;MMis obtained,
But for all Q’Y\‘e such that Mf 2~1, SUM reached a minimum well before
the point Mf =1, while being negative all the while and began decreasing
very rapidly as M; -~ 1 is approached because of the singularity at
M¢ = 1. Thus one has to also choose the point where this jump in the varia-
bles is to be achieved. In some earlier calculations, this was prescribed
at the point where M; began oscillating around My = 1 while ignoring the fact
that SUM has already passed its minimum value and thus large jumps in

x Te T, > o« were required. The choice of these jumps
is not straightforward as they are interdependent.

A computer programme in Fortran II language was written to integrate the
differential equations using a fourth order Runge-Kutta method. Following
the suggestion of Ref, 14, the programme contained a mechanism by which
the integration step size was increased as the calculations proceeded down-
stream in the nozzle. The integration step size at the start was varied
from 1079 10 1078 and a value of 10~8 was found to be quite good. The pro-
cedure for varying the nonequilibrium mass flow and the jump conditions
were also incorporated in the programme through a subroutine,

The programme was run on an IBM 7090 computer at the Institute of Compu-
ter Science of the University of Toronto. Even though each iteration for
nonequilibrium mass flow determination took a small time, about 5 minutes,
several iterations up to 20, were required to obtain the limits such that
facmne defined in Section 5. 3.1 was found to sufficient accuracy. Thus only
the earlier calculations for the axisymmetric hyperbclic nozzle were done
starting upstream and downstream while all the later calculations were
always started downstream of the nozzle throat, at X =+ 0.25".

6. DISCUSSION OF RESULTS

6.1 Axisymmetric Hyperbolic nozzle

As explained in Section 5.1.1, the aim of these
calculations is: i) to study the effect of starting point for nonequilibrium
flow calculations, ii) to consider the effect of the amount of energy initially
in vibration, iii) to examine the importance of the parameter U. For these
purposes it was enough to make the caiculations for a short distance, that
is 3. Ocm downstream of the geometrical throat.

6.1.1. Effect of starting point for nonequilibrium calculations

To study this effect, the calculations were done only for the most
complicated case, that is the coupled non-preferential dissociation model
and for the reservoir conditions T, = 5900°K and 100 = 82 atm. The non-
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equilibrium calculations were started at

’x=—0,5 cm N 'xz-Or/ am » 7(= 1-'2 0" +¢3 Crn

where % = 0 is the geometrical throat.

For 7% =-0.5 cm, the flow is very near equilibrium and in 6 minutes of
IBM 7090 time, the calculation could proceed only up to x = -0. 35 cm.

Thus the calculation was shifted to 7% =-0. 1 cm which, when once it passed
the critical point of Mg =1, took about 5minutes of computer time to do

the calculations up to x = +3. 0 cm. More details about the iterative proce-
dure used to find the nonequilibrium mass flow and passing through the
critical point are given in Appendix D, For calculations starting at x =

+.2 or .3 cm, there are no problems since the mass flow in this case is
simply the equilibrium mass flow.

Figs. 4a, b,c, d show the results of these calculations. T:(e quantities
aty 4% 44

e Th | Th (Fieta), % (FEE SF G
(Figs. 4c, 4d) are plotted for upstream and downstream starting points.
It will be seen from Figs. 4a, 4b which give results for starting at x =
-0.1 and + 0. 3 cm that the variables merge into each other around x = 1. 0
cm, especially for Ty and T, while the effect on p cannot be seen even
from the start. However, o seems to take a little more distance before
it compares favourably with the upstream calculations.

: ' : s df, dl, d«
Fn Fig. 4c, where the comparison of the derivatives ¥ , dx, JT&
is shown for various starting points, the dashed portion
between x = -0.35 cm x = -0. 1 cm is an extrapolation of the curve between
x =-0. 5 cm to x ==0. 35 cm. (Thus the derivatives also merge into each other).
In the critical region the derivatives behave in a singular fashion. In Fig.
4d, the comparison between the results obtained starting at x =~0. 1 cm and
x = +0. 3 cm are shown up to x = +3. 0 cm. Here again, as in the case of
variables themselves, they merge around x = 1. 0 cm.

Thus it appears from these comparisons that if one is not interested in the
finer details near the throat, the nonequilibrium calculations could be started
at a point downstream of the geometric throat, without incurring significant
error, thus avoiding the time consuming process of finding a nonequilibrium
mass flow for starting nonequilibrium calculations upstream of the nozzle
throat.

6.1.2 Effect of the relative amount of energy in vibration

One is apt to think that, where there is only a small fraction of
energy in vibration, the assumption of vibrational equilibrium for the cal-
culation of the flow properties may be realistic. In Figs. 5a, 5b the flow
variables along the nozzle axis are plotted for T = 5900°K and pg, = 9.4 atm,

For these conditions o7,= 0. 9571 so that about 4% of the mass of oxygen
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is in molecular form and the energy in vibration is only 0. 3% of that in
dissociation. From Fig., 5b, it will be seen that while the vibrational
equilibrium model shows that o freezes at 0, 83, it freezes at 0. 885 and
0. 915 in the coupled nonpreferential and preferential models respectively.
This difference is of the order of 7 and 10% for the two coupled models and
is not negligible. From Fig. 5a, there does not seem to be much effect
on pressure while on the translational and vibrational temperatures, there
is an appreciable difference between the results of the preferential and
nonpreferential models, for example at x = 3.0 cm, Ti/T. = 0. 04 and 0. 05
respectively for the two coupled models. The vibrational equilibrium re-
sults are taken from Ref. 8 where only the variation of & is given.

Thus it would appear that even if the energy in vibration is only 0. 3% of
that in dissociation, the vibrational equilibrium model may not be a very
realistic one for the prediction of flow properties, the effect of this being
largest on the frozen atomic mass fraction.

6.1. 3 Importance of the parameter U

\
As is pointed out in Appendix B, in the most realistic case, one has |
to consider U as a function of the vibrational level as well as the translation- ‘
al temperature. Even for a single gas, this is quite involved and if one has -
to deal with a mixture of different gases, U will have to be taken different
for different gases, thus making the problem a very complex one. For
these reasons, it would be of interest to know how useful are some simple
approximations such as U =00 |, in which case it drops out as an addition-
al parameter, or U = 9,, /n where n is some number such that it can be
written down directly for all the gases in a mixture, instead of calculating
it for each gas as a solution of Eq, (B68) for its dependence on 61: , ev ,
Ty - .

The importance of this parameter is again brought out very clearly in Figs.
4a, 4b for T, = 5900°K, p, = 82 atm and Figs. 5a, 5b for T, = 5900°K
and pp = Y, 4 atm. Figs. 4a, 4b show ithat the effeci of U is quite important
on Ty, Tv and o whileFigs. 5a, 5b show that its effect is mainly on
of . The values of these at x = +3.0 cm for U = o and U = /5 for the
uncoupled model and for vibrational equilibrium model are given in the
Table below.
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TABLE III

Comparison of the flow variables for different dissociation models
Axisymmetric Hyperbolic nozzle, at % = +3.0 cm, A[/A*x= 63,

No. T,(°K) ' platm) Model Tt/To Ty I Tq o o,
1. 5900 82 Coupled
U= &%/g 0.11 0.72 | 0.528]0.693
U= oo 0. 14 0.68 0.475
Uncoupled 0, 17 0.61 0. 445
vib. eqm. 0.21 0.21 0.430
2. 5900 9.4 Coupled
U=8/6 o0.04 0.83 | 0.915]0.957
U= @ 0. 05 0. 88 0. 885
Uncoupled  0.055 - 0. 72 0. 850
vib. eqm. - - 0.830

For case 2) by comparing X with ({¢and T; with T,  near ¥ =0 in Figs.
5a, 5b, it will be seen that the flow is almost frozen. This is also clearly
seen by comparing the frozen and starting values of o¢ namely, 0.915 and
0. 928 respectively for the preferential dissociation model. For this case it
would appear that the assumption of completely frozen flow from the reser-
voir is as good as the preferential model. This can be seen by noting that
Tt/To for the fully frozen case is 0,035, this is also shown in the figure.

For case 1), comparison of ¢ and o¢e and T; with T, near X =0 in Figs,
4a, 4b shows that the flow is slightly out of equilibrium at the nozzle throat.
From these figures and the above Table, it would appear that the effect of
the value of the parameter U is quite appreciable.

Thus the parameter U appears to be quite important and it would be very

enlightening to use the equation (B68) for U as a function of Ty to give a
clear answer to the question posed in the beginning of this section.
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6.2 UTIAS 11" x 15" Hypersonic shock tunnel:-

The preliminary calculations presented in Section 6.1 having demonstrated
that the calculations could be started downstream of the throat and that the
coupling of vibrational and dissociational nonequilibrium is important, some
further calculations were carried out for the experimental conditions,
obtainable in the UTIAS shock tunnel.

For these calculations U was always taken to be equal to e1>/6 and all
calculations were started at 0.25" downstream of the geometrical throat of
the primary nozzle shown in Fig. 2.

The flow deflection plate was inclined at 10° to the axis of the primary
nozzle. The terminal nozzle was single wedge type with an included total
angle of 15°. The entrance section to this nozzle could either be 11" x 0. 4"
or 11" x 0,7'", Calculations were done only for the 11'' x 0. 4" cross section.

As explained in Section 5, II, the aim of these calculations is:

i) to consider the effect of vibrational relaxation time, Ty

ii) to permit evaluation of the realistic set of U, and T, values by
comparison with experimental data to be obtained in the near future (e. g.
Ref. 45), .
iii) to consider the effect of variations in reservoir conditions,

iv) to provide theoretical estimation of flow properties in the test
section.

6.2.1 Effect of vibrational relaxation time T, :-

As discussed in Section 3. 2. 3, from theoretical (Refs. 37, 38) and experi-
mental (Ref. 23) considerations, it appears that the vibrational relaxation
times in expansion flows, (where the vibrational relaxation is from an ini-
tially higher to lower excitation), could be shorter than those behind normal
shocks, where the vibrational relaxation is from an initially lower to higher
excitation.

To study this effect, the calculations for the UTIAS Hypersonic shock tunnel
primary nozzle were done for three values of the vibrational relaxation time,
namely,

Z;’ expansion
?V norvna/ Jhac,(’

The values 0.1 and 0. 05 were chosen since the pressure measurements of
Ref. 23 for vibrational relaxation of nitrogen in a nozzle without dissociation
were found to lie between theoretical values obtained by using these relaxa-
tion times. It may be noted that when there is a sufficient amount of oxygen
in atomic form, the atom exchange reaction (76) could be quite important

in deexciting the vibrations. However, this is not considered in the present
work. It is hoped that, if the cumulative effect of the atom exchange reac-
tions and the vibrationally excited state of the gas are going to shorten the

DT‘: = IO " o«/ , 0-05 (116)
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vibrational relaxation time for expansion fiows, the effect may be studied
qualitatively bg reducing the vibraiional reiaxaiion times determined behind
normal shocks.

The results of these calculations are pliciied in Figs, 6a, 6b, 6c, 7a, b,

7c. When the vibrational relaxation time is shortened, the vibrational

state of the gas should be nearer to the translational state of the gas, i.e.
T, — T{. As more vibrational energy is available Ty will increase slightly
thus decreasing relaxation times. For a Boltzmann distribution of vibra-
tional energy distribution, this wili lead tc fewer number of molecules in
highly excited states as the translational temperature is reduced, Because
the preferential dissociation model gives a higher efficiency for dissociation
from higher vibrational levels, the number of disscciations will be smaller
for shorter relaxation times. Since in this model, the recombination pro-
cess is essentially independent of the vibrational siate of the gas, the num-
ber of recombinations will be independent of the relaxaiion time, Thus the
net effect of shorter relaxation time on ¢ should be fo reduce if slightiy
because of the reduction in the number of dissociations, Fig. 6a, 7a which
give Tt/ Ty, Ty /Tovs. yand Figs. 6b, 7b which give o« ps. X show these
trends. It is also interesting to rote that for shorter /Cv the dissociation I«
nearer equilibrium for a longer distance as may be seen by comparing
with Ol . Reducing the relaxation times below DT = 0.1 has no observabl«
effect on o/ for both cases treated here, while there is a very small effect
on Ty, For both sets of initial condiiions, there seems to be an effect on
pressure for variation of DT from 1.0 to 0.1 but no variation for a further
change from 0.1 1o 0.05. The density does not seem to be affected at ail by
the change in ’[\V . This effect on density and pressure can be explained
from the energy and continuity equations:

F@’A = Congtant

2 2
and h + ¢ ——J_Zé?‘_. RT. + (1~ R E, ,L[e,(gp-,»rﬁ’ = constant

z = 2
as follows:-

The decrease in £ and T, in the shorter relaxation time case decreases
the vibrational and dissociational energy coniribution term in h, while the
increase in T; increases the iranslaticnal and rotation energy coniributions
(i.e. 7/2 RTy) from the molecules, The iranslaiional energy contribution
of the atom 30‘1_2\_RTt remains approximately constant since ™ and Tj vary
in opposite directions. The net effect wiii be ic keep h approximateiy
constant or increase it slighily and thus %— either remains constant or de-
creases slightly which in turn keeps \0 approximately constant or increases
Jt slhightly. From the state equation P= PRT (14 a) :fRTtL"“* 2t )

it will be seen that p should increase slightly for shorter relaxation times.
The molecular and atomic contributions are shown separately. so that it

can be seen that while the atomic contribution (2°(SRTI-,) remains approxi-
mately constant because o( is decreasing and Tf is ir.{careasi.ng the mole-
cular contribution'( (i-«) g RTy} increases since the effects of 1 - and
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Ty both contribute in the same sense. Neglecting the decrease in the vibra-

tional contribution relative to that in dissociation and translation-rotation,

one may say that q and hence ‘F will change appreciably if the changes in
o< , Tt are such that

ZR(T, +aT) >R (x- <o)
A H (1= )
g > (1+ 2% 7 ) ~ o<

For example if Ty/ g, = 0.02, o£<0.07 or for 1t 2 0.1, o/<0, 35,

Such situations may occur only for relaxation G

for very high pressures since for a given temperature, the dissociation level
decreases with increase in pressure. Thus if one wishes to ascertain the
effect of T, from experiments where density variations are measured one
may be able to do so by starting with initial stagnation pressures of the
order of a 1000 atm. This figure is quoted since for oxygen for such pressure
and temperatures of the order of 6000°K, the initial amount of dissociation
in the reservoir will be relatively small and thus will be able to satisfy the
above condition. However, for such pressures, the changes in pressure
will also be significant, and these are easier to measure. However,

direct measurement of « more readily allow estimation of 'VV . Of
course the ideal measurement would be to obtain the vibrational temperature
T, directly.

The velocity ?T/,/ﬁ and the frozen Mach number My is plotted in
Figs. 6c, Tc. Since My = %/ﬂ; and

Az < IE3% RT (o) = /770/F (106)

f. errd

a decrease in ¢ will tend to decrease [, towards the completely un-
dissociated limit. Because the effect of decrease in T, 1is to increasep

and not change > af may remain roughly the same or may increase
for decreasing T, - Then the frozen Mach number M; will decrease for
decreasing 9 . Figs. 6c, Tc show that there are very small changcs

in q while the effect on My is more pronounced and further the trends are as
suggested above,

Another point to be noted from Figs. 6a, 6b and 7a, 7b is that while ©/
freezes, though at different levels for the different TV the vibrational
temperature Ty does not. This has an important bearing on the compari-
son with experimental results in the test section to be discussed at a later
stage, '

Thus, it seems that for highly dissociated gases (Fig. 6a, 6b) reduction

in T, reduces the level at which o¢ freezes, increase Ty slightly, and

brings Ty very near to Ty, T, does not freeze and p is slightly increased,
, q remain constant and My decreases. For the case of lower X the

effect on o/ is negligible while the effect on all other variables is the same

as in the highly dissociated case, though less pronounced.
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The results for the other experimental conditions given in Table I are pre-
sented in Figs., 8a to 8d, 9a to 9d, 10a to 10d. All of these show the same
trends as discussed above., The values of Ty, TV , P, 57 _ o¢ at the end of

the primary nozzle are given in Table IV,

6, 2.2 Effect of variations in reservoir conditions:-

It was pointed out in the earlier section that there are variations of pressure
in the reservoir which induce variations in reservoir temperature. It was
felt to be of interest to see at least qualitatively how this will affect the

pressure in the test-section,

For this purpose an arbitrary condition F,=

22.45 atm, and To - 4600°K which is such that its temperature is near that
of case 3 and its pressure is near that of case 5 given in Table I was con-

sidered,

It may be seen that the relative g
tions are exaggerated ( 22,45 | 4600 o

22.

done to enhance the effect.
compared in Table V below:

1 4800

ressure and temperature varia-
9.46 4630y

22.45 4600

This has been

The test-section results for these cases are

TABLE V

Effect of variations in reservoir conditions:

10\ /‘Pv Pl /'Po
No. DT P, T, X < =% T e My iR B.L.
(1) 1, 39.46 4630 0.341 0.165 0.516 0.036 0.140x10°° 14.33 0.204x10_2
(2) 22.45 4600 0.418 0.254 0.392 0.023 0.833x10°6 17.03 0.146x10"
(3) 22.10 4800 0.524 0.340 0.351 0.019 0.655x10°5 18.59 0.127x10°°
(1) 0.05 39.46 4630 0.341 0.160 0.531 0,044 0.176x107° 13,36 0.249x1072
(2) 22.45 4600 0.418 0.239 0.428 0.033 0.131x1oj5 14.81 0.212x10°2
(3) 22.10 4800 0.524 0.314 0.401 0.029 0.114x10"9 15.63 0.199x107°

From this Table, it may be seen that even very large variations in reservoir

pressure or temperature will effect the ratio
by a small amount for DT = 0,05 or 1.0,

pressure ratio

For

T023

DT= 1.0,

(To )3 4600

Pl P, .

- @:ﬁﬁgﬁ =1.043

(’Pn /‘Po)2 __ 833
(P'/$0)3 " .655
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/Pl/Jpa

the test section only

Decreasing reservoir pressure
or increasing reservoir temperature seems to decrease test section static
Since the main uncertainty in the reservoir con-
ditions is that of temperature, which is not measured, a rough estimation
of this effect may be made by taking the temperature ratios and the test-
section static pressure ratios between cases (2) and (3), denoted by T3,
p123 and the ratio p123/T023 denoted by TPR.

— 272

TPKk=Il.220



For DT =0.05

(?//%) W13

with boundary layer taken intoc account TPR for DT = 1.0 is 1. 103 and for
DTv = 0. 05 is 1, 032.

Taking Tqg of Table I as the possible correct temperature, the change in
( P/ P, )theo for changes from Totpeo to T0 are calculated below as

P/ Po ) estimated = ( P, / P, )theo ¥*TPR * ( T, )theo! T02-

TABLE VI

Possible effect of uncertainity in reservoir temperature on test section static

ressure:

== ey (P /2Jhes (Pl0ecinted  (PlhJiso (PP timald
No. DT My /702. Inviscid with B L.

(1) 1.0 8.03 1.020 0.111x107° 0.125x10"5  0.168x10~5  0.189x107°
(2) 9.62 1,007 0.140x10"° 0.172x107° 0,204x10-5 0.227x10-5
(3) 9.63 1.033 0.681x10-6 0,858x10-6 0.132x10-5  0.150x10-°
(4) .00 1.011 O.655x10-6 0.808x1076 0.127x1073 ~ 0.142x107°
(1) 0.05 8.03 0.155x10-5 0.174x10-5 0, 224x1075 0. 236x107°
(2) 9. 62 0.176x10-5 0.195x10-5 0.249x10~5 0. 259x10"9
(3) 9.63 0.111x10~5  0.126x10-5  0.194x107%  0,207x107°
(4) 11. 00 0.114x10~% 0.127x107%  0,197x10"9 0. 206x1079
Table V also gives the ratios Tl T 2(_;_;iand M, . From the

Table it will be seen that the effect of increasing reservoir pressure or de-
creasing reservoir temperature is to decrease the first two ratios while it
increases M,

6.2.3 Realistic set of U, “ﬁv values:-

The effect of the parameter U in the dissociation rate expression and of @V

the vibrational relaxation time on the flow properties in the nozzle was considered
in detail in section 6.1. 3 and 6. 2.1 wherein it was found that both of these

effect considerably Ty, T, ,  , andto a lesser extent P and My. By
comparing the theoreticaily obtained results with experiment, one should be

able to determine values of U and Ty values which may be used in the rate
equations.

6.3 Other Points of General Interest
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6. 3.1 Coupling Factor:

It was pointed out in Section 4. 1.1. 4 that the coupling factor V, which is the

ratio of kdp eq for vibrational nonequilibrium and kdeq for vibrational
equilibrium, would have to start with a value equal to 1 at the start of the
nonequilibrium calculations and would have to increase as the flow departs
from equilibrium and then should decrease and finally tend to zero as disso-
ciation freezes out.

To demonstrate this point, the coupling factor V is plotted as a function of
area ratio in Figs. 1la-d. Fig. 1lla shows the effect of the parameter U in
the dissociation rate constant while Figs. 1lc-d show the effect of T, for
three different cases with U fixed at 8p / & .

From Figs. 4a, 4b, for Tt/To’ TV/TO’ o« , <g for To = 5900°K and po =
82 atm,, it is seen that Ty and ©¢ begin to freeze rapidly around A/ A% <5.
From Fig., 1la, which gives the coupling factor for this case, it is seen
that around this area ratio V increases rapidly. V is seen to be larger for
the preferential model than that for the non-preferential model because of
the relative amount of nonequilibrium and different freezing values of ¢ ,
Ty as seen from Figs. 4a, 4b. At an area ratio of AJA% & 63, it was found
that VPrefa:1033 and Vnonpref ~ 1023 and they were still increasing.

From Figs, 11bto 11d, it will be seen that the effect of decreasing T,, from
its normal shock value, while keeping U constant at 6]_-, le , is to slow down
the increase in V up to a much larger area ratio and even shows towards the
end a decreasing trend as was expected in Section 4.1,1.4. The DT* =1.0
curves in these figures correspond to the preferential case of Fig. 11a and
show the same behaviour as in Fig. 11la. The decreasing trend towards the
end of the primary nozzle is shown by all the three sets of reservoir condi-
tions for D T =0. 05 while for DT = 1.0, it is shown only for py = 22, 45 atm. ,
Ty = 463009K. V reaches much smaller values in this case compared to those
of po = 22,1 atm., To = 4800°K in Fig. 11d, This means that for high re-
servoir pressures leading to smaller initial amounts of dissociation in the
reservoir, the effect of the coupling of dissociation with vibrational non-
equilibrium is not as large as it is for low reservoir pressures which give
higher amount of dissociation initially. This is already shown in Figs. 6b
and Tb discussed in Section 6. 2.1 where the effect of DY variation on the
freezing value of ¢ is seen to be much smaller for the high pressure case
of Fig, 6b than for the low pressure case of Fig. Tb.

6. 3.2 Relaxation lengths:-

The quantities g/ and g ’[’V occurring in the dissociational and
vibrational rate equations

de Y

=% - 7 (VL.—I)
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(C; - Ev)’y’
glr—-o0)

-&,  (E-&)vvyL
Ty T(1-0¢)

_'.

and __&—-d —'—2—‘”
d*» — %

have the dimensions of length and are defined as characteristic relaxation
lengths for dissociation and vibration. Rewrite these rate equations as

follows: .
At ___ X —oley (117)
ax — d '

and dfv — En‘&lz
ax  — 7, (118)
where rq=q ( A - o(e’ y |/ (VL—l) k119)
v - - -1/
ry= |L - PVLEE -2y Mlta-£) + w( G-Ev)/ff‘o‘fdz (120)
8T, gli-#) 2lrw)

and Key isthe local equilibrium value of ¢ . When vibration and
dissociation are very near equilibrium, then o == 0fe, and 59’& Ev

A -
Thus g(‘y l_": X /Ldee << %(z%f- Since /ol‘del/<<0(e£ (121)
and ii" i: &/—2_ f’ << -—E-"V Since [Ea=&, [<< T (122)

When vibration and dissociation are very nearly frozen 0(ee<<o( and

b << E, or [ol= Ko 2> 0%y and /20‘5/))5”

Thus
dot || —olet lep k
= A, 7 (123)
dgv Zco‘gv “ Eoo
— > |
d}( /ly > /2‘/ (124)

Hence the transition from equilibrium to frozeg conditions means that the

titi ot I |45 f 1
quantities ot 'WL and 2 |7}L‘J change from a value

very much less than unity to a value very much greater than unity. One there-
fore may be able under these circumstances to predict approximately the
frozen values of o¢ and T, by assuming that this occurs when

7@? l_g;‘c_| and _E:_ '_%‘;L become equal to unity.

This will not help very much since this still requires the knowledge o*
these quantities in nonequilibrium flow. Hall and Russo (Ref.: 8) in their
calculations for dissociational nonequilibrium only evaluated the quantity
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do( for equilibrium flow that is for infinite rates. By replacing

,%—, -‘,f/%".%”/ and 0y by 1/2 4o where 0ewo  is the
infinite rate flow or complete equilibrium flow result the quantity rq was
also evaluated at the infinite rate flow values and they found that this predicts
the final freezing value of o¢ with reasonable accuracy.

If it is assumed that this may still be valid for coupled vibrational and disso-
ciational nonequilibrium, then one may say that the frozen values and their
location are obtained when

'__ce —— 0(9” (125)

—f—l = 2‘” | (126)

where E,,,m corresponds to the vibrational energy in complete equilibrium
flow. The derivation of Eqs. (125) and (126) implicitly assumes that vibra-
tional and dissociational nonequilibrium are uncoupled, so that Egs. (119)
and (120) for ry and ry are to be rewritten as

and

’ 7
rg = %(““ O/ee)/(L -1/ (127)
and

where primes denote the relaxation lengths for the uncoupled model. Egq.
(127) may be further simplified by rewriting L in terms of X , nlp,2s
follows:

L _ KC’ mo. : (l—o‘) —_— 0(3(2 (/—J/ (129)
= 2P ®2 T mplee X
since ihe local equilibrium constant K and the local equilibrium 0(,,. are
related through Eq. (60). Hence
2
o =t (=) = o (I=tg) (130)
- - _;.L ..A
and
(,= = st -
i o(ee-a a(’(/—ofc) o! W lell-o) ¥

By evaluating this at equilibrium conditions, one has

y, = % 2 —le ’ (132)
= = %/ (/-a(e P
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d =
== /sz je Z;e (133)

where the subscript e denotes complete equilibrium flow values. For the
coupled model r4 cannot be simplified to the form (131) because the factor \
rapidly becomes larger than unity. To see how much ry differs from q/
because of the factor (VL-1)/ ( o — el ) and also how much ry, differs
from g%,  and how much these differ from fe |% and 9.7, and
(4
the effect of the parameters U, 'DZ  on @/Y and # /¢, ;the
following quantities have been computed, namely,

DRL =gy = lodep— //—25;7 (D87
DRLI = %’V’ = 2ay, (D88)
o - e =l
VERLI= 2P, = ‘e (D86)

where the quantities on the left hand side are Fortran names and I isa
non-dimensionalisation constant defined in Appendix D. These are plotted in
Figs. 12a-12h, The way in which the quantities rd;, rvq , I'v] differ from
each other as the degree of nonequilibrium increases can be seen as follows.
At the beginning when everything is near equilibrium, £~% Ty ~T, Vx|
and thus using Eq. (130) and replacing O(epby ol ’

rdg —:_-/%-Lo(—o(ee)/(VL -1/

r%‘“‘ Oee ) /(=1
. Ja.l g = X, (138
$/"L /~Hey) * o'TJN (R-or) ™7 (_2_/)‘,12;(4 |

or )de < /zalé/ (135)
and also G = E thus from Eq. (120)
ry; = [ | YWL(E~S) M) +’}‘[G'-&'%f.,-a/] ~
fT, §f Ct—x) 2 Cr-ot)

¥ 1) (6- 2,)]-/
T § 1% lwn-&

| | K=o%elG-8,) ]"
£7, Tde /- (5.-F)

o [L 1 obl-vyp) G-&, ] (136)
[r"?; Yo, A-0) &o-§

R R

R
~—
&o
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N Py, tlves) G- & 1 Rye, Wb—otpp) & - ~/

o7 - vé 2. v A — vty ce) 6 =&
(Wi o &gl o[- 5 G e

or er > rvll (137)

As frozen values of T, and ¢ are approached, a/ég-. ¢ and

oL = ot
Adp = ; ¢

- ¥ vl -/
J— X — Xeg
T % , (1—ot)
[V (/Eg(eé) o * </

WO('??' &0(/24‘6/

S (G-&) _, _ Pre E—Zy]"
7, la~28/ (- fO-2) &u-&, 138)
[l _{_L 6—‘?(1 / =/
fr § &2, 1o

R &R

Qyg / -5 777
/Zyll [/+ Qd;, /0O g-a: ]

Also rdy < rqy, andry; > Ty, for the same reasons given below Eq, (137)
Figs. 12a to 12h"show these trends, that is, we always have rq < rdyp and
rvl S Vl.

The value of rdy; for full equilibrium flow should be greater than rdy; for
nonequilibrium flow since T{ neq < T eq and geq > dneq SO

=n -
%lez o< }é/; cx& 7+ neg > 7‘}% o /Wef
% 7;}18; 7-59 14 e{ '
from Egs. (86), (111), (112). Thus 3
(240 ) = feg > = ( /?del)ﬂef (139)
2 Yer /}‘,‘gf :
and
{72 Ve )@{ = t?eg Z\r/,{ < D;:z? 7\;/;4&5 ;({ ‘ve, /)712{ (140)

This comparison with equilibrium values is shown in Figs. 12c and 12d where
it will be seen that near the throat, when the flow is very near equilibrium
(ray q) X (rdpy neg and (rvy eq) Xy (rvyy neq and as t.he none'qui.librium
increases (lel ne ) and (rv11 neq) curves depart from their equilibrium
counterparts showing that (rdj; eq) > (ray neq) and (rv]; eq) < (rvyy neq)'

The effect of the parameter U on rdy and rvi is similar to that of the equili-
brium case, namely,

(a8 Jap > (e, Jpre £ (141)

(éyg, )nf < [/sz)rréf

(142)
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since Ttp, > Tt pref where the nonpreferential and preferential cases are
distinguis%ed by the subscripts np and pref respectively. These trends are
shown in Figs. 12a and 12b. The differences in o(pref and odnp appear to
be sufficiently large to reverse the above trends on rd)j, i.e. from Eq.
(138), :

(rd]_]_ pref) ~ O{pref * (rd]_l pref) > O(np . (rd]_]_ np),’\\; (I‘dynp (143)

where ofpref > Op from Fig. 4b whereas this reversal in trend on ryi
appears to occur only when the amount of nonequilibrium is relatively large.

From Figs. 12c to 12h, it appears that the effect of variations in vibrational
relaxation time 7", is significant only on ryj, rvi; and seems to make only

slight differences on rql, rqy; namely, the reduction in vibrational relaxa-
tion times reduces the vibrational relaxation lengths as is to be expected.

The question as to how good is the frozen value of o predicted on the basis
of equilibrium flow results may now be answered. It is stated above that
the frozen value of ©6< may be considered as that obtained when

Ty dx
oled ax

= | | (144)
or using average equilibrium flow values, from Eq. (125)

Ao _ oo _ Y Z-O(eg,\,_’z‘é.?.:(/z/ /<(/£.:[ /”? (145)
7 ' |

ax s~ fo (—Olw  fe 7€,

from Egs. (125), (132) and (139). From Figs. 6b and 12¢, it will be seen
that (rdy eq) begins to depart from (rdlj)peq When significant freezing in X
begins namely A/A% A7 4. Also from Fig. Bb, it will be seen that d oee
is approximately equal to (d i ? . Thus it appears that for an ax
€q e
engineering approximation, the frozen value of ¢ may be predicted reason-
ably well on the basis of Eq. (125) evaluated at equilibrium conditions.

Similarly the frozen value of the vibrational temperature T, is given by the
condition

ry ‘dfz = 1 (146)
En dw

or evaluating at equilibrium flow values, from Eqs. (126), (133)

d&gl: fwoo — Ew o — b (147)
dx Yo LT (Poeg

From Fig. 6a, it will be seen that for D T =1, ( dTt le(dTv) at the point
ax ax neq '

where T, begins to freeze rapidly, i.e. for A . 10 whereas from Fig. 12d,
Ax
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it will be seen that (ry] j ¢4) has already deviated considerably from (ry]

for AJAx = 10.

around A/A* 2oy 4.0, and for D?= 0.1 as early as AjAx - 1.1,

DT =

For DT =0.05 and 0.1, Fig, 6a shows that Ty, is freezmg
only slowly. However, (ryll eq) departs from (ry]; neq) for D 7# = 0. 05

Thus for
0.1 and 0. 05, the criterion of Eq. (147) for freezing value of T,, does
not seem to be useful, while it may be useful for D 7 =1.0.

In Table VII below, the freezing criterion for o< , is applied to all the cases

of Table I,

ion is approximately satisfied and
and A/Ax the corresponding area ratio, and o<

The values of fdll:

d <
x

<7

and their products when this criter-

the corresponding value of &X
the finally frozen value

of o« obtained by full nonequilibrium calculations and the reservoir condi-
tions pg,

Comparison of A§f

TABLE VII

Ty, & o are given in the Table for D = 1.0.

found by freezing criterion (144) with finally frozen g

= 1.0
No. M Al Ax d X
s Po To o AlA (rany) s (rqp d %_ o

(atm) neq d%fheq .
1. 8.03 20.82 4040 0.183 9.99 0.970x10 3 0.100x1072 0.97 0.096 0.090
2. 9.62 39.46 4630 0.34110.34 0.256x10°3 0, 338x10"2 0.87 0.181 0. 165
3. 9.63 14.18 4350 0.364 5.12 0.152x10°3 0.475x10"2 0.72 0.249 0,238
4. 11.00 22,1 4800 0.524 6.27 0.843x102 0.645x10"2 0.54 0.356 0. 340
5. - 92.45 4600 0.417 9.99 0.270x10 3 0.258x10"2 0.70 0.264 0,254

7. CONCLUSIONS

A theoretical study has been made for quasi-one dimensional
nozzle flows of pure dissociated oxygen for coupled vibrational and disso-

ciational nonequilibrium.

that gained due to recombination,

calculations: 1) U =< giving equal probability; and 2) U =

It is assumed that the probability for dissociation
from various vibrational energy levels may be represented by an exponen-
tial function containing an adjustable parameter U. This takes into account
the effect of vibrational nonequilibrium on dissociational rate.
assumed that the vibrational nonequilibrium may be represented by a vibra-
tional temperature which is different from the translational temperature.
The effect of dissociational nonequilibrium is taken into account by modi-
fying the classical Landau-Teller equation for vibrational relaxation through
addition of two terms for the average energy lost due to dissociation and
Two values of U have been used in these
6o /6 giving

higher probability for dissociation from higher levels.
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are called non-preferential and preferential respectively.

The effects of exchange reaction between atoms and mole-
cules, and relaxation from higher to lower vibrational excitational state
on vibrational relaxation has been studied qualitatively by shortening the
vibrational relaxation times observed for flows behind normal shocks.
This has been done for the preferential dissociation model only that is
with U= & /6.

The values of the flow variables in the test-section of the
UTIAS 11" x 15" Hypersonic shock tunnel were calculated by assuming the
vibration and dissociation to be frozen at the end of the primary nozzle.
Boundary layer corrections were applied to these inviscid conditions in
the primary nozzle using an empirical formula for the evaluation of bound-
ary layer displacement thickness for turbulent flow under the assumption
of frozen boundary layer.

The results show that:

1) The nonequilibrium calculations may be started downstream of the
geometrical throat at a point where the frozen Mach number is greater than
unity, thus reducing the computer time.

2) Even if the amount of vibrational energy is initially small compared
to that in dissociation (due to a very high degree of dissociation), one has
to consider vibrational nonequilibrium and also the effect of coupling to
predict a correct finally frozen value of o<

3) The finally frozen values of & and T,, for the preferential disso-
ciation model are higher than the nonpreferential values. Both of these
are found to be higher than those calculated for the uncoupled or vibration-
al equilibrium models. The translational temperature T, for the prefer-
ential model is found to be lower than that for nonpreferential model.

4) Shortening of vibrational relaxation times below the normal shock
values reduces the level at which the atomic mass fraction freezes finally.
This reduction is more significant for nozzle expansions with a higher
initial degree of dissociation. It also brings Ty nearer to Ty as 1is to be
expected and does not show Ty, to freeze even up to an area ratio of about
50. It also slightly increases the pressure while there is little effect on
density. '

5) The coupling factor, or the ratio of the dissociational rate constant
for vibrational nonequilibrium and equilibrium increases rapidly as o¢
begins to freeze rapidly. It continues to increase even up to an area ratio
of AJax R 50 for U= 6p /6 and normal shock vibrational relaxation
times. For U= 6p /6 and vibrational relaxation times shorter than
those behind normal shock, it begins to drop rapidly around A /Asx 2 50
after reaching a maximum. It is felt that if U is taken as a function of Ty,
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even for T, = /Dv normal shock, the decreasing trend may be obtained.
This U, T4 relation as derived in Appendix B is

Y]
6 — A ZO
Q (-u) al! QT )
where a, ' is known constant , Z, is the collision number, 8D is char-

acteristic temperature for dissociation and Q(Ty), Q(-U) are given by

QAT = & e-Ej/kTy

Q-U) = ¢ oEj/ku
6) For a fast and approximate evaluation of the finally frozen
value of o , the criterion that the product of the dissociational relaxa-
tional length ryj; and the d‘; , evaluated from equilibrium results be

of order unity, seems to be good.

7) It is anticipated that comparison of the theoretical computa-
tions given here with experimental measurements of o taken in the
UTIAS 11" x 15" Shock Tunnel (Ref. 45) will enable realistic values of

T, and (J to be determined,

8. SUGGESTIONS FOR FURTHER WORK

Two important modifications can be carried out immediately:-

1) Use of a proper U, Ty relation given above instead of taking U con-
stant and independent of Tji.

2) Taking account of the atom-molecule exchange reaction in the vibra-
tional relaxation equation by means of the rate constants given in Eq. (8"/).

3) Modifying the fractional number of collisions M(D-E : ) with relative
energy greater D-E, to take into account the internal energies of the
particles entering into collision, i.e. writing

4
M(D-E;) = (D-Ej /kTy) [A! & (D-E;)/kTt

instead of the exponential factor alone, where A =1, 2 for atom-molecule
and molecule-molecule collisions respectively.

4) Appication of this model to the flow around a corner to see if a de-
excitation shock occurs behind the tail of the expansion fan as found by
Glass and Takano (Ref. 5) with vibrational equilibrium model. (This work
is already in progress - July, 1966).
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NUMERICAL CONSTANTS

Universal Constants:-

Boltzmann constant k = 1. 380 x 10~16 erg/O%K
Planck constant h = 6,620 x 10727 erg. sec.
Avogadro number Np =6.027 x 1023 per mole,
Constants for Oxygen:-

Mma = 16 gm/mole

€0, = o )

)

g0, = 3 )  Eq. (A.186)

O = 2. 08°K ))

04 = 59390°K
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APPENDIX A

Thermodynamic Equations

With the assumptions I) to V) of Section 2, the thermodynamic properties of
a pure dissociating diatomic gas in vibrational and chemical nonequilibrium
can be derived. The gas mixture is composed of atoms and molecules and
divided into two subsystems, I) consisting of the translation and rotational
degrees of freedom of the atoms and molecules at temperature Ty, and II)
the vibrational degrees of freedom at temperature Ty,.

1 2] n)
Let Nj be the number of j particles in the volume V and 5:, R f: ,
fj\” be the partition functions associated with the translational, rotational
and vibrational degrees of freedom (j=1 and 2 for atoms and molecules respec-
tively). Then the Helmholtz free energy A of the mixture for the total

number of particles N= 2 NJ in the volume V is (Ref, 29)

A=A tFnt A, - &

where

I

/q.t *ﬁ&

, %)
-kngnllf -t

(A3)

Ay = -RT, 3N} ey £

A-t » Ay . Ay Dbeing the Helmholtz free energy for the subsystems consist-
ing of the translational, rotational and vibrational degrees of freedom re-
spectively. The partition function is

|
|
| \
3 3
jg‘f): a7, )* y .?aj@-‘c‘*’/kﬁ (A4)
|
|

J #°
where
on = excess energy of the ground states of the j particles above the
reference energy level,
o] = probability or the statistical weight of the .ground energy level
Eoj.
mj = mass of a particle of the j species,
k = Boltzmann Constant.
h = Planck constant.
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It was pointed out in Ref. 16 that gyj are essentially the electronic partition
functions for atoms and molecules and may be taken as constant for oxygen
in the temperature range 1500°K to 8000°K,

Since atoms have only translational degrees of freedom,

7C(/l)__ fau (A5)

while for molecules in ground electronic energy state,

jp(/i) = I (A6)
)

where (9,,' is' characteristic temperature for rotation; and according to the
harmonic oscillator approximation where 6, is the characteristic temp-

erature for vibration. ) -G, -/
£=[1-e7] (A7)

From classical thermodynamlcs the entropy of the mixture is (Ref., 29)

S= [( *) +{bﬂﬁ)+(q7;/ ] (A8)

( 2(ActAs) } féTZ,\/[&gf +~%rfm%”\’ r/]/ (A9)
:-.—kZN“[/”?fw b= 2+
&% fZ/\[/ [—?7‘ 7 TJ- -*‘—zf (A10)
""kizf*'[@{f-w*[‘]#w e, +5]-f/\£ M@){

where ?,,-‘—Zk@, 5 Spp=0 , as given in Ref. 5, and Gp is
the characteristic dissociation temperature. Now

9,47, —_—ar[ﬁﬁ N Lo (1-¢ ’/7;)] gy

Tv o -5 e
— sz Zg’[/-—(f /’7)+1€7; N> ./T‘e~®/r,

= ke[ tos (- &™)~ A |

(A11)

Th
«®w kf/\/,[{y},‘ﬂ’)_ e‘f’v’*f*f%]f[%ﬁwdgﬁ”—@,vﬁ;]A/l
— N[l (- %)~ 8‘2%7: 7 ] (A12)
Nikpy =2%R (A13)
In terms of mass fractions l Nlﬁ/]p‘/ = (l'a‘)K (A14)
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where 0{ is the atomic mass fraction, R is the gas constant per unit
mass of the diatomic gas. 'Thus for the specific entropy s of the mixture,

17 W, th) -8, ﬁy/r
P [l de o £ ez d It it 0™ 2 g
=
—:w!R[ 27 +2?'(iﬂ§'£) ~ 3018 2T]
+0- x)}?[ *—srz:,* +3?1"‘(/ - @—’ﬁz”l‘[&j

= oa‘b 7e30, (1= we, /3 %) 01 (o 7rm£7 j
R > @/5;2 (-e Fes) P (A15)

+o/4f/ /%’"‘“(7 /& C%_ﬂ“__t [/-8% @é&f

Xt 6,

Oty
7+30‘ (/—v()cfy o«ﬂ /A //' ) /7’) [4”’7’167; )% 7

o E DR Lz angnl ]

In terms of the characteristic dissociation density & and reference
entropy ., , defined by

b (Tmd)* &5

b= 9 53 Z (A16)
2
and A/) k%?[?(? ( (A17)
where T, is a reference temperature, the expression for the specific entro-
py Eq¢. {A13) can be rcducced to
L) _ ot alE |y 42 [ & ~
R R e 2 e
IF) bt ) % (f-t) (A18)
mwzg[ (&) (1-¢ )(f’ Lore

The internal energy can be written as

E S’(%T[ 7_’9) + —r/ (A19)

D(T)(/ /y ‘kt ;N/%”f + N. @flt;[;[/zj/ (A20)
mk‘/‘{ éf*'z‘ft) NG +-L)f

66




(—L) /eTm [N bpl-¢ AV)—']

- 2 -6,/ % (A21)
=T ey ()

:sz O

¥~

The specific internal energy is

- o
8——)9‘, [N (2¢*5p)*§N2Tf+NZE%L:7]
kNl 69)*.&1\2(27;7‘-—7;;’“—)

or with the did of Eqgs. (A13), (A14),

2o (ET &)t - RUET, * g =)

et £ - 2% 1 - g 1l | (822
= R[22, +(/—o()—-—“—— * 6, ]

The pressure is given by (Ref. 29)

Pec()=-s (At At A

=—;7;'1é7;[/\/,&g’£w+ N: Zqﬂ{ﬂ\/f
:‘kzz[ N, 'f‘V/\/z ]

or with the aid of Egs. (A13), (A14),

_ k‘l}[ Jo;(fR " U-a%?f?]

= PR C'/fﬂ) Tt

(A23)

The chemical potentials are (Ref. 29)

(A24)

A =r§_/€ﬁ3 =;Wc(ﬁ‘ * AptAY)
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Thus the chemical potential for the atoms is

ﬂ gL/\//})_?N {HtfﬁdfﬁV/

;H[N(Zajf by 1) 7 Mallg L, 4
-/émvzfgff”’j

_ _&Tt/dd,,/[zr/m;ﬁ E/%_Vj @—Z%/

=N thﬂ;[[z””“éﬁ)%f/ -‘2%2 T]

— 246, 47 Ly M%/ ¥l 34/

(A25)

For the molecule, the chemical potential is
/azz;,% }-szgjﬂm% kTGl
(g o ) AT, e
:'167;&7 4ﬂm1€ M _ V _L_E] £7%/— /f/ (A26)

=-# 7%/[4”"0 gh,/ﬂ%ﬂ j fﬂ%/’f &%

The specific chemical potentials gy and g9 for atoms and molecules respec-
tively are

g/_ /ﬂ/——i?ﬁ ‘7?72@;"(%) (A27)

_ M

2 " 2m — RT#Z‘?[/\/ f(/—o(/] /?7_67// (A28)
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where

K, = g, 2787 %

pe (A29)
— [47716)32 m™
K=o 3 o, (A30)
The specific enthalpy h is ;
N :f’,; :E;;by_é‘-/'ﬁfo
. 7+ (A31)
__R[———-Z + - oQ—L-W -ro/ﬁ/

-/
from Eqgs. (A22) and (A23) '

For vibrational and dissociational equilibrium, one has the condition that
the specific chemical potentials of atoms and molecules be equal for a pure
diatomic gas.

1. e. g/ — 3; ' (A32)
T-=7, =7 (A33)
Then from Eqgs. (A27), (A28) it can be shown that
Xe __ 2—& ( 7') // &‘/T)Cs‘é’/?— (A34)
/—ole
where (e is the equilibrium value of ¢ . For thermal and dissocia-

tional equilibrium, the last term in Eq. (A18) for entropy vanishes by vir-
tue of Eq. (A34), giving a relation between (¢ and T in terms of entropy
which can be derived in a slightly different fashion starting from differential
flow relations and Eq. (A34) for complete equilibrium flow. (See Appendix
C)

This relation is

300 (RS, G [ o ] A4 .
Z = 7+ +2Z‘?[ﬁ(/-¢)(/_cf%)/_ 7= constant

(A35)

Entropy Equation

Eq. (A18) may be differentiated to yield an equation for entropy change in
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vibrational and dissociational nonequilibrium in terms of df 0’0{ d7'
a’/o as follows:-

%ﬁi:—g—do( "do('f(/o() "5' yidrjfddef’—_Lf % 4z

de = 2dx 20k¢ ~Bfy 1 B,
+l7i+o( '/‘,_o('/é,—&%( (/;)0'7}

A A -0, 5(2/4; —¢)
o leg | () (- €7 ”/‘9 ]
+(/7‘0‘)/—-4[r ‘2_;‘——62% * -h/,v (-e 0/9[ )07;’

_ dp( B }a&]
fTZO/T

___ddf%— ?1-_&./.?,/. - //-7;0: l&fp{/
T_J?[z/i )/_€~3r /€°p/r U”(/ ]/ (A36)

7" f7£ 2r, 7

/ 2 dT 22./ 0/7; _
7, Tz T T ds /"”/‘ d&/

%:W/é“%+%+@[%‘é/ - ‘%"’“/j/

_ df , AT, /500 6 (/~¢) dEy
(’*’(/7*%[—2&_#)*—#

+0’7;/“ (/-fol)ﬁv 2 + /-ha( Dz/_(/*’yﬁ’f

v

which is the same as given in Ref, 16,
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APPENDIX B

Derivation of the Rate Equations

The exact equation for the net rate of change of molecules in the vibrational
energy level j with energy E; is (Eq. (80) )

J
L8] 4 LA by [Aad [A] - £l AL A
 RGIAIIAT- kAN + Ry SR ] (30)

which under the assumptions given in Section 3. 3 simplifies to
d[ dIA] |
- E/ J- /[’%][’42 é/: ) [/?VJ[AZJ f}@_y:[@,_///%]
+ R 1 LA ]- Ry [ )IX] + Ry LAV [ <]
=-%,,[A.] [ JIAR] -+ Ay TrnlE 83 14-,]
= ;éw JRNIX] + %,y [A)Z[x]

where the relations (70), (71) between &V'/V"" and é)r/\}.,./ are used.

(B1)

Dissociational Rate Equation

The dissociation rate equation is obtained by taking the sum of equations of
type (B1) for all the vibrational energy levels, namely

d.c. \J a,c. ol 7§§ rﬂ‘]-— U.‘#l)l:Av 7

TWF('%Q)ZQM[HJ]—\,[ ]} [XJ E{Q,W* Z%ﬂq[ﬂ] ” (B2)

It may be shown that the sum in the first bracket in Eq. (B2) is zero as
follows:-

For level (j+1) and (j-1), the first bracket in Eq. (B2) is

Q+JIA Jﬂ]-mz)m@n]mp(-% ol A@J-u‘ﬂ)[fbﬂ (B3)
-1y LA \)m]“r@xp(_’ )[SZAJ..J-Q-UTQ;\JJ (B4)
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Adding (B3), (B4) with ‘)
\.LQ:;] RED) A, ot exp (‘%{,{Q-} 2! ﬁ\;] -g\ @G“ﬂ (B5)
gives J
0o, A Gl g e owplE [l T4 AT |

Let j=o be the ground leve] and j=A the last level. Then for j=o, the expres-
sion in the first bracket of (B2) is .

(B6)

o Av] - o+ A, ]t %{)C‘#)T(‘ ﬂ)tﬁ») -0 (nb‘DJ -

(B7) -

or — A+ "’*P(‘%%)[Ao]

while for j=4,

L o]~ 4| Ags J* W[‘?E;T'L)[(?—*UD‘M'@ [ A&,]] (B8)

But the term exp ( "'P”)/hT ) (,e+ 1) [ AQJ is due.to the molecules lost
to level ( £+ 1). As the number of levels is only £, this term should be
zero. So also [Ap+ ] =0, Thus for level j=J, one has '

_*y Y | "~ (B9)
L]A]- Lewplt-25)) Ao ] R o
But the negative of the sum of (B7) and (B9) will be the net result of summa-
tion over the levels j=d, to j=1-A.

Thus

dUA]_
di

\,i%_ﬂgl :ft’g]zﬁa(ifégj+fﬂ\]?[x] Zﬁh\j'y ~ (B1O)

— (B11)
= ZZOU + 71 2Z, !
where <Z4; and Z,,,‘ dissociational and recombinational rates for level j.
Under the assumptio!‘ls of Section 3. 3 and specialising for collisions with mole-
cules only (i.e. replacing [¥] by [Az] ).

Z Z,LJ’—"):ATin] Z'knJ: fé,,iﬂ]‘[;,qzj | (B12)
while '
[A\]Z‘kd\j[&J\J:ZZdJ :ZOZC% Nd NZM(D_EJ) (B13)

where Z° is the total number of collisions per cc per sec per unit concen-
trations, c is a constant, [A;], = Ny is the concentration of the total number
of molecules, Cﬁﬂ= N} is the concentration of the number of molecules
in vibrational level. j, PJ = e'CD‘EJ)/&U, is the probability or effi-
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ciency for dissociation from level j, and M(D-E ; ) is the fractional number
of collisions with energy greater than D-E. . M(D-E. ) may be written
from statistical mechanics as J J

M(D-&;) = Q‘CD‘EJ‘)/M} (B14)

where Ty is the translational temperature and D is the dissociational energy
of the molecules. In terms of an overall rate coefficient kg,

[Hﬂiﬁ;&{&ﬂ: ZZ"U = ﬁ;LEA,_]Z = KNy (B15)
From Egs. (B13), (B15)

Zz qu\ = z,Zcﬂ N@ N, M LD—EJ) (B16)

M2

or Ry N2

M—ZZCP. < M (D-5;)
—(D—E‘)/ (B117)
—ZCZ —LDE)/@ /J N /RT,

Under the assumption of Boltzmann dlstrlbutlon in v1brat10n at a tempera-
ture Ty,

N, Z \E"/&Tv . (B18)
Thus -/%Tv "CD‘E‘) A
~(D- 3 /% T

T Q%@u s ST c / t (Blg).

For the case of vibrational equlllbrlum with translation, T =T, and

= - ST,
=205 TR S SR

- 12
Je BT, c (B20)
Dividing Kq. (Bi8) by{B20) and dencting the expressions containing the
summation of exponentials by Q i. e. _
QcT) =7 e AT : (B21)

btai - s " )
T s ST e
Moy — 2,58 ik, & (- EM*T/Q(E)

(B22)
QR e e JeFG R -2/
— Q(T/ f”%l/c:%} Ze sl/{(r 7; b/
QL) _@(T)
TRy R (U)
where
)bo— (B23)
T Ty T U
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Thus the rate equation (B11) reduces to

—O—tw — R IAT + .k, VAT AT

= -V ﬁd OJ{‘},'AJ‘+ RALATL B> ]
R JV 1&1] . )
£, 1R VAL sz Ta _,1 (B24
where K. is the equilibrium constant
— Rde
K. = _“?/_\%_ (B25)

Let the atomic mass fraction be o( ,

o — ,5 (B26)
where FL is the partial density of atoms and ]D is the total density,
[A,) and [A'} may be shown to be (see Ref. 5).

o«
N = [A]=2% meleime
\\.
- —_ ﬁg/ ~ol) mele (B28)
where mg, is the mass of one mole of atoms and
my = mNj gm mole (B29)

where Nj is Avogadro's number and m is the mass of an atom. Since the
total number of atoms is constant,

2§JA:]+ [A] = constant (B30)

Differentiating
a/[/), 1, dla) _ -

af tTdE —
or d[: S— —2% (B31)
Thus %l:?l__d[f _ d[ﬂx]__zk [A]!m] V[C [/4'] /

— - n
(B32)
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AUt 4, 120 Fr) Jop t0)8m /f

20-3”7 [ C)pzo(l/z

or a

gf) — f,;(g zg,‘agfﬁ’ e Ma ¢ /—0:J — /f7 (B32)

Eq. (B32) is taking into account only the molecule-molecule collisions. For
the atom molecule collisions, from the assumption ’kolﬁ = A 7@0(7"

AL] — ¢ 1AJIAT B, TAT
a? [A:]
— "'7% [/qufVK( [/;] //
= b TAL YK -1
::—>\/jé,L ;;: ;1/ Mg, (;02(/ —/j

2f
0([/}]_0([/0%4/ dﬂ‘h] 2% / V/(_Zﬂ_@_(/#/_/z
At = A1 — “df — nz? 2P oA
(B33)
3
AP _ 2A R P Mo (1=
JE = = fVKCE?L?T"j
(B34)

Adding Eqgs. (B32) and (B34), the net rate of mass production of atoms is

06({(5"9 ﬁ}a{f (o 1250) (1 Ko Tt L - / (B35)
A
=pPY (VL -1 (B36)
i £, P (ol 72400
e /V o M= (B37)
Mo Ke (/=) (B38)

L= —ZF &7
By the use of species continuity equation, one finally gets

0/0( = (vl - 1) (B39)
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Vibrational Rate Equation

The vibrational rate equation is obtained by multiplying Eq. (B1) by the

vibrational energy E for level j and summing over all the energy levels,
i.e.

4 = JE 9’5’%— B TAIEE = 141 1=G+IAs Tt EN g J @7

— [x]Z &Ry iR) PArG IS K by (B40)

Consider first the dissociation term for molecule- vmol_ecule collisions,
- f 2
[A12E Ry, [@] Z 2 &y =& (B41)

where E,- is the average energy lost per mole (N 1s~the number of
moles per cc),

£ = ZZ & Z¢£F A6 M (D~ %)E’

/ NS YA
S - Z& -(p 5)46 %
— 7,y TR &AL = A
g’ ‘%u -3471_ ' _%7
= A P& C Cp 4 '
szc = Zk/ FET ,,  (B42)
where T{ is defined in Eq. (B23). From. Eq.-v(B 19)
- =D -
. Z %U AT Ay (B43)
_ 6?47, ) 8w
which when substituted in Eq. (B42) gives | ‘ |
-& s (B44)
L 7{‘;—);&- e 9 2. . '
=%, £(7.) |
where £ (Tp ) is defined as 3
—E
Z5e ‘/€7} L (B4)

From the assumptlon of kd« Aé{m , the T for atom-molecule collision
is

N

E_,:)\%d 557-70) (B46)
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Thus for the complete dissociation term

["]ZEJﬁc{I\[/?/‘] — éNLZ+ E:_Nz/\//

:Nl["/l’éd?(&/ * Ny A Ty 5‘5’]
= N2Ry ECT) (N2 + 2 N,)
=Na2Ry (Nat Ny (T

= MRy Nera N E

— 'Qd =) P

Y y (/~0(7~;AO()E

— p* (1—¢) - 2N )=
— &1—4qu (/— x+2AX)E B4
For the recombination term for atom-molecule collisions
[/}JZZ/%] 276 E; = G IR A
Now & and )6 can be written in terms of K, é andé as
(See Eq (B89), Y " ' d? a(/?
_ hueg
N Kc
’b— 4 3 [AwJ/‘f
From Eq. (B20) 24 24 o¢ y
. by -ZBT; ~U (B20)
,éd? =cZ, & YD)
From Eq. (B90), % %, %
| ~2fv -7, E
7 [ TAd], — v v
bdj ag— [—L-/Z;‘):jz?i%/‘?— cZ.C e e - /&(72')
so E/@U } (B48)
- z =
G =k, (L ) ¢ G0 ke £60)
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For molecule-molecule collisions, under the assumption )éd/a-'—'—)\ é/l/
P

[PPSRy & =TA1° G,

(B49)
—AR SRIPEC-L)
For the complete recombination term
[A] I Z R £ = = G [A)AIT G LA 7
= g, [AI *{ [0+ rAlf € -0
2 f (B50)
= b, 777 Zia (1— ot #24) G
where Q/é
" Z Y (B51)

G=8-0)= Q ( yy

The remaining terms in Eq. (B40) are due to internal changes of the number
of molecules in each vibrational level and these terms are reduced to the

form
(Ew N Ev%; A (B52)

where E o, is the vibrational energy calculated at the local translation
temperature by the Landau-Teller model. Thus the vibrational relaxation
equation is given finally in the form ’

E, _En-E Pl -, PE& = (B53)
gtt == V_é/ e (-2 2 )E "’él_zzﬁ,f (o) )G

From Egs. (B35)-(B38), it will be seen that the coefficients of the second
and th1r'd terms in Eq. (B53) are simply Z g and =g
respectively, Thus

AE, _ Ew=f, VL F F¥ =
at — T SMa E+“‘”L« 9 (B54)

It may be noted that the vibrational energy Ey in the above is the total
vibrational energy for Ng moles/cc

Eyzgp(/.%. = NNy E, (B55)

where & is the specific vibrational energy, and Ny is Avogadros
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number. Since Zv is used in the total energy equation, Eq. (B54) may
be written for &, as follows:-

From a;wa;‘/on cB 3 4”}5/,4 dfﬂth- f?ﬁ//é’%,q
and from Eq. (B28), Ny = P~%/ams , thus

dév /| dE, Z;QQé/)
dt — MU A, o ‘at

P ,
VA "’,\f,v: _ D2ma [a"#ﬂ[ £ P 4]

7/ £~ Na ry @7, N,
+ & RMa TY V=) (B517)
// o) 2 ”’/,\ :
T dE _ Ll WE-E) = _
476‘/ = + 5= (o -8, )

where now E and G are specific energies,

Determination of the Parameter U

In the collision model for chemical reaction of diatomic molecules, a
parameter U with the dimensions of temperature is introduced to describe
the efficiency or probability of dissociation from a given level by writing

this efficiency as
-(D-&; ), '
/}o\i___ e ‘/%éu | (B58)

It is implicitly assumed here that the parameter U is independent of the
vibrational level. Under the most general circumstances of nonequilibrium
between vibration and translation i.e. for a non-Boltzmann distribution in
vibrational energy, U has to be taken as a function of the level \] or its
vibrational energy E; and the translational temperature Ty i.e.

J
=) (s, ' (B59)
If the dissociational rates from different energy levels are known indepen-
dently, then UJ can be evaluated from the relation between ‘P and ﬁd

namely,
\ktﬁ: Msz:CZo&f‘/\(D‘EJ)
=c2,c” " WAY € Zar
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which can be solved for Uj knowing &o‘. and Ty. For aless complex case -
of Boltzmann distribution in vibration, \if one knows d for vibrational
nonequilibrium, one can calculate U as a function of Ty and Ty i. e,

U (T4 . Ty ) from the relation

— - b"“ \ “CD"‘:\
kGF-Z_CZ,E( SL T _;\J‘_a e H)/if!Tt (B61)

where &,,. and T, are known and Nj may be expressed in terms of the vi-
brational temperature Ty, as

- B
N%Z =f \)/&T,, QUT)) : (B62)

Since little experimental data is available even for»{e‘ only the simplest case
of U being a function of Ty can be determined. This can be. done as follows.
Writing the expression for kg in the case for which vibration and transla-
tion are in equilibrium, narnely,
| -E/hT,

o VA% -p-£)
[‘%ae(] —C2z[¢e 5 Vkuzee‘%/k A J47}

}

(B63)

and comparing it with the expression for %d determined experimentally,
namely, e?

[ﬁd%]%r: &Ttn e‘ep/Tt ( ""M 36:) (B64)

where a and n are constants determined from experiment, U as a function
of T; is found as a solution of the equation obtained by equating f‘d from

Eqgs. (B63) and (B64), that is , ‘ ez
-6 "—%U —%Tt Q(“U)
aT e TR=1cz,6 " C @ (T.)
-0,, -6 -
or -609@ _ c Z.
R(-u) arre (r,) (B65)

As noted in Section 3.3.1, C=1for |J=o0 .

In the simple harmonic oscillator approximation,

80




_& -8/ ) -
o= A = (1-e™¥7) " (B66)

Q(-v) =)e T — dﬁ"/u (B67)

and

where 6, is the characteristic temperature for vibration, Thus U is
obtained as a function of T} for the simple harmonic oscillator approxima-

tion as
c % (I =%/ )

= : J— (B68)
16 n
JZ e a7
For example for the case of oxygen molecule-molecule collisions
N =-25
(B69)

A =0.073x 743 X/0//605

in the temperature range Ty = 37000K to 50000K from Ref. 32 where the
dimensions of(a Tt) is cc/mole sec.

Eq. (B68) is a transcendantal equation and the evaluation of U as a function
of Ty is quite complicated. The collision number Z, in Eq. (B68) is given
explicitly as (see Ref. 29) for like molecule-molecule collisions.

2
7 = ~ [IMR T, — 4 T % (B70)
022z 7 m, 22 '¢
and for atom-molecule collisions
g ;, — A % (B71)
Z 01z — (0 +0\)/\/ — M2 I+
/l/l,; .
where /-, , O\ are collision radii for molecule-molecule and atom-

molecule collisioan, and _M,, is the reduced mass of the atom and
molecule and is given by

_m, m. (B72)
,/V/z— myt M, o

where mj, mg are the masses of atom and molecule. For oxygen 0\
2.96 x 108 ¢m and A\, = 3.54 x 10-8Cm (see Ref. 38),

Approximation for U

Consider the molecule-molecule collisions and substitute for £, from
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Eq. (B70) into Eq. (B68) and for 0"

RHS in Eq. (B68), then.
2,

6 J— /sz v _ / &’ - -
&% T ar.” / (/7‘ /

pmS AL ’Qu “ T, MZ[/—Z/%-f N \7

BT, n+h)

< / , expand the numerator on

o
N/

(B73)

where ' ' A, ‘9.

B

= constant (B74)

Relative Efficiencies of Atoms and Molecules

In section 3. 1.2, an expression for the number of dissociations per sec
per cc Zy is given in Eq. (64) as

=# -E%y
Z‘d_ _4_& C (B75)

where Z , the total number of collisions is
Z=Z¢ Y\A}’\B (B76)

where Zg is the collision number, i.e. the total number of collisions per
sec per cc per unit concentrations of reactants and Ny , Y\B are number
densities of reactants per cc. Zg for molecule-molecule and atom-mole-
cule collisions are given in Egs. (B70) and (B71).

From Egs. (B75), (B76), Zq, = Zd - ‘&d can be written as

NaNg

24 _ _ Er)® o EHAT (B77)
\kd—-Yl&n _zdo_P'Zo Z (ff

As pointed out in Section 3. 1. 2, A = 2 and 1 for molecule-molecule and
atome -molecule collisions respedively because of the differing number of
vibrational modes entering into the collisions and thus if ")Qda is the rate
coefficient and Po\ the probability for atom-molecule collisions, then

P  Zoa
A= %; =P Zom 2] [kr (B78)

for oxygen > (ST BT
Zoiz 74]-' (—0\\+0\2)J paall

—_ B79)
V4 £ 2 ™ (
022 N O;’ szl
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from Eqs. (B70), (B71) where a 2.96 x1078, A, =3.54x10°8 and

Az is given in Eq. (B72) and mz z2m zm,, where m is the mass
of an oxygen atom. Thus

Loz _r‘/ )2 2m (m+2m)

Zoss m 2 m
. ,J‘/TZ' 2,96
— R 54)
— I (B80)
Also from Byron's experimental results (Ref. 33)
. _d:-a/
Rgp =202 5.26 8, 2 & T (B81)
2, 4% (B82)
‘éd -——-Zazz /0 =% (6p/) 6
where n=2 and £5=1.7, ‘E,_:o 24. Thus N\ is given by
7\_ f(dq_ Loz 5.216 xX/h7 5‘»)‘
Loz <210t x0,2%% (B83)
N ———
~ 325 B,

Equilibrium Constant K.

The equilibrium constant K, is from Eq. (B25),

K.= _;%;%‘(__ (B25)

where ‘.’éa , %,\ are the dissocciaticnal and recombination rate con-
stants for vibrational and translational equilibrium. Also for thermal and
chemical equilibrium; from Eq. (60)

__ /LAl (60)
KC— ([/41] e,‘y °

where [A] ,[As] interms of ¢ are:

X

[R]= Iz (B27)
PLI=0Y

[A]= .azfnq | (B28)
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Thus Fole®  Pl-%)
KC - i 274

(B84)
_ =2f oce?
Ma /—Xe
Also for vibrational and dissociational equilibrium from Eq. (A34),
z -
e a/‘}, f V7
/- C C°
/—le ( / (A34)
Hence '
0
7|2/ e , (B85)
w =32 (L) (- e |

where fp is giv‘en in Eq. (Al6).

Relation Between krj Q‘I% and K¢

A relation between the recombinational and dissociational rate constants
for vibrational level J under vibrational equilibrium can be obtamed as
follows:-

For vibrational and dissociational equilibrium, Egs. (B11), (B12), (B13)

give . .
> Zh\] pm— Z de . | oo : ‘ (B‘86,)

e.%
[RJ%TX%,QZZ‘@@%ZQJJ | ' | . (B87)

T#lg I oy~ s, ‘f‘;?. §

By the prlnc1p1e of detailed balancmg one _
«fb’\;): b M\]eq MJQR - (B89)
dJm{ L—’%]e% [’&]2‘%
— 1 EA’"iQi ‘
&ddec{ LA,
From Eq. (B13)

Ry THITAI=Z4;=C 2 ? N; N, m(D =)
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Rys =2 M(D-E;)
1 2, d@%b—ej)/_iu G-CD‘EJV&E

-E/bT;
Ll o 7 &P RN 7—@\ &M,
Mq{ LP’”JC@ L€ 5 ~ (B90)

—c2,6 MR  BAY D)

Dissociation Rate with Internal Enefgy Taken into Account

In section 3. 3.1, Zdj the number of dissociations from level j is assumed .
to be of the form
N

Z4;

J=cZoP-

j N M (D-Ej)

i
where M(D-Ej) is the fractional number of collisions with a relative kinetic
energy greater than D-Ej along the line of centers. The expression for
this is taken as

M(D-Ej) = exp [ -(D-Ep/xTy |

In section 3. 1. 2, the overall rate for vibration in-equilibrium with trans-
lation or Z4; summed over all levels was shown to consist of an additional
factor (E“’/kJI‘)S/s' (Eq. (64) ) if one wishes to take info account the
internal energies of the colliding partners as well.

Suppose that vibrational energy of all molecules taking part in a collision
can contribute to the energy of dissociation.

1A

Consider 'monequilibrium' situation, i.e. T;_ =

Tv

(a) Dissociation rate, molecule-atom collisions:

This is, of course, the same as already evaluated:
Rate = ZZ"Q‘ =2 <Z, P'ZHJEA‘JMCD‘E‘)
J d ° \ d

The internal energy of the molecule is taken into account in this formulation;

(b) Dissociation rate, molecule-molecule collisions:

Consider two colliding molecules, one with vibrational energy
Ej, the other with energy E

Total energy = E;

it E,
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Energy required for dissociation =.D - (E;+ E »
Probability that translational energy of co Jllls1on along line of
centres exceeds this amount, is e- (D_Ej-E 2 KTt

o . -CD“E‘—E,Q)/feT
Rate = p=d OZ} F\)‘Q CZOEA‘JJ [A‘e] C J t
, the symmetry number, =2 for collisions between like molecules
(e.g. 09 - 02 collisions), so that collisions are counted only once in the
summation,
O= 1 for collisions between unlike molecules.
Assume collisions between like molecules, i.e. O\ = 2,

Consider the form of Pde .

By analogy with P , P« 0 could be put in the form -
R N

- (D-E.-E.)
P\l = C | J i/féu

0 )
_ ~(D-E5 -5 )by
\ mo__ QanL: cZ, 5 73
SRy =g 2 ize |
TA] ] BB ART,
: [ﬁ»] [ As] E/ g
——CZO v A Sy jo T y
eI LG N €
e Loaty . Ea,
Z’ CT, Q) % y
_CZA-U P(T QI{) Eu AT, EAT,
—= C Z menp€ e e T
Z
<2 e‘%u.e—%n { (T
- # Q*CT.)
wherg —7'; = ~~T; - 7« 7
ven =T, K=t . b=V

. Vm:_&i:__L,.Q._—L-‘LCT) :
Ry QT &CU)
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But for molecule~atom collisions,

A a8 aR)

K, T e acy

oo = (y~)°®
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APPENDIX C

Equations for Limiting Flows

It has been pointed out in Section 4. 2. 2 that the limiting cases of equili-
brium and frozen flows can be determined as the solution of a system of
algebraic equations. These equations will be derived in this appendix for
vibrational and dissociational equilibrium, called here equilibrium flow,

and for vibrational equilibrium and frozen dissociation, called here partially
frozen flow.

Equilibrium Flow

When vibration and dissociation are in equilibrium T{ = T, and

O/e—o(e(f’U The dependence of ¢ on local /D » Ty is shown in Appendix
A to be

' -6, -6
X6 £ }“/-a/e‘; 72’;[’ € /f/c: 1/7;-‘-‘0 (C1)

In addition, one has the mass, energy and state equations

€A =M,
£+ b=

P ‘JOR (1+) (C4)

and the momentum equation in differential form
4P
?df +F =0 (C5)

Here P, f , 3— » To, of 5 A, £ are the pressure, density, speed,
temperature, atom mass fraction, nozzle area and enthalpy respectively.

It has been shown in Appendix A that the cnthalpy J can be expressed in
terms of ¢ , Ty , g, - In equilibrium £, = ZV(Tt) and hence h is a
function of (X and Ty, alone. Thus once the reservoir conditions are known,
one can compute A, , thus completing Eq. (C3). It has been shown in
Section 4. 2. 2 that the entropy remains constant and this condition can be
used to replace the differential momentum equation (C5).

constant . (C2)

constant (C3)

This is achieved as follows:-

Write equations (C1), (C3), (C}) in d1ffer7entia1 form:
e —
Xz~ Z +Xf e T [ox =°

(C6)

o d7
Foe g + ey 2 *? (C7)
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pdP , df 1 dE

| [ d%_
deffdx*‘r;ax+ ;=0

It AX

(C8)

On combining equations (C5) and (C8) one has

Z% R(Hﬂ};e) d)}: 1‘/?[/1‘4//3—2 1"?75 d%» —0 (C9)

Eliminating ;(?% 5,/)9
obtains ’ X

%é_ _%_.,. . - /f;{))(f M]_’ 0/7;,[ hr ) - _?i'ﬁ/_r_xrz o(C10)

from equations (C6), (C7) and (C9), one

From the expressions for h and x in terms of ¢ , ]p , T4 one can
evaluate the partial derivatives occurring in Eq, (C10) as '
‘Ho‘ —_— 6V "
R ——Z—Ti:—eyu/g__/ +6_D - B (C11)
a
f\F} = 7;30( + /—od( @VB’/T e (C12)
X (Z-t)
Nt = o (C13)
2
v X _
P?C(’—- (=X ‘ . (C14)
Xy =- [ + %_ - = 7 ] :
Ty = Lz7 TTTET T e (C15)

Substitution of expressions (C11)-(C15) in Eq (C10) gives -

[_@ g’sgL 3o af (4+ /0()] [ f@iﬂe—(»«éﬂﬁe’f—{@ ”§‘0(c16)

Dividing throughout by Ty, this equation can be put in a perfect differential
form, namely '

—d[ﬁ +2 &Jy-z%[mﬁ*’?egT t @2%] 4/@%]*-20//%{"6_%47:? (C17)

Integrating, one obtains
& — e (C18)
-+ fg"(k 5 T % +f-09 t_/ =Clonsban?

The integration constant may be evaluated at the reservoir condltlon Xo >
Tto,- By comparing Eq. (C18) with the expression given for entropy in
Eq (A15) of Appendix A, it will be seen that Eq. (C18) simply expresses
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the fact that entropy is constant in an equilibrium flow.

Thus for the evaluation of o, » T, oC, ? in an equilibrium flow, one
can use Egs. (C1) to (C4) and Eq. (C18). To complete the problem, one
still requires the knowledge of the equilibrium mass flow W?e This can
be determined as follows:-

The mass conservation equation in differential form is

1 4P, 1 45— aA —
Fart i + 4= (C19)

For the derivatives in the system of equations (C6), (C7), (C9), (C19) to
have a nontrivial solution ,when — 0 , the determinant of the coeffi-
cients of these derivatives in these equations should be zero, i.e,

X,a Xw )(7;: o
o 7%( 7€7£ &
ARE

‘l’—"‘FLE/?g RUHY T

0 (C20)

or

fﬁ”ﬁf)&'x’yr e —%Hr, ]“K’ﬁ( [ WMot ~To J#FWUZ[@Z& -Xphy J=0

Egs. (C1), (C3), (C4), (C18), (C21) can be solved for the critical values of

, /9 5 Tt’ % at the geometrical throat from which the equilibrium
mass flow ’)778 can be- calculated Once the mass flow is determined Egs.
(C1) to (C4) and Eq. (C18) are complete and can be used for finding the equili-
brium flow properties for a prescribed area variation in a nozzle.

(C21)

Partially frozen fiow

In a partially frozen flow vibration is in equ111br1um with translation giving
Ty = Ty and dissociation is frozen, that is j_ =0. Thus one has to

determine only s » Tt Z, . In addition to the mass; energy and
state equations (C2), (C3) (C4Y one can derive another equation giving a
relation between )0 and Ty by eliminating dq from (CT7) and (C9).

dx
For the partially frozen case, Egs. (C7), (C9) simplify to

a7 a
Ae—ar—+ ¢ df; =0 (C22)
;,{9? * W*;w’: g; +;?/m<)g%z o (C23)
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Elimination of dg from egs. (B22), (B23) gives
dx '
Az ; %G’l Rl T; df
[ R )] x f ax -
Substituting for hTt from Eq. (C12) and integrating, one gets

by p- 5t g (1A é‘j;/ ~lp e ﬁ)] Coneda (C25)

z(h‘ofj VT Oy

(C24)

Here the integration constant can be evaluated at the reservoir conditions.
Eqg. (C25) simply expresses the fact that entropy is constant in a partially
frozen flow. Egs. (C2)-(C4) and (C25) can be used to evaluate frozen flow
properties. However the mass conservation equation (C2) contains the
unknown the frozen mass flow 71 This can again be evaluated as in

the equilibrium case by starting w1th Egs. (C19), (C22) and (C23) and requir-
ing that, for %_‘}DZ‘= 0, these equations have a nontrivial solution for their de-

rivatives, that is that the determinant of the coefficients of the derivatives
be zero, giving o ] QL

f
ﬁ_,; o 7 (C26)

or Rirt) P%p{)—a %
2 [y ~g ()] - RC#2)E T = O
" Egs. (C3), (C4), (C25), (C2T) can be solved for the critical values of

. » Ty, ?, at the nozzle throat from which the frozen mass flow
7’)’]; can be evaluated.

(C27)

Fully Frozen Flow

For frozen vibration and dissociation, the situation is exactly the same

as in the partially frozen case except that in the expression for 7, given
in Eq. (C12), the second term on the right hand side drops out which is
nothing but the vibrational contribution. Also the third term on the left
hand side in Eq. (C25) does not appear because of the change in h,.
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APPENDIX D

Computer Programme

The nonequilibrium flow equations derived in Appendix B were solved numer-
ically on an IBM 7090 digital computer at the Institute of Computer Science
of the University of Toronto. The computer programme was written in
Fortran II language. Since the calculations involved the integration of
coupled ordinary differential equations for Ty, o< and &, or7v, a
fourth order Runge-Kutta method of integration was used. It was shown by
Emmanuel and Vincenti (Ref, 14) that for such a problem as this, the fourth
order Runge-Kutta method is quite adequate. As discussed in Section 5. 3
the nonequilibrium calculations were started from initial equilibrium con-
ditions and contained a mechanism for progressive increase of integration
step size as suggested in Ref, 14.

The first step in the main programme was the evaluation of &, , ]p,, for
the given reservoir conditions 790 » Tty by the equilibrium relation between
& , P ,T and the state equation. Then the equilibrium and the partially
frozen mass flows were evaluated, and the equilibrium and partially frozen
flow properties throughout the nozzle were calculated by use of the
equations derived in Appendix C. For nonequilibrium flow calculations
starting upstream of the geometrical throat, a nonequilibrim mass flow
between the equilibrium and partially frozen mass flows was chosen and
the calculations were repeated in an iteration procedure until the true non-
equilibrium mass flow and the critical point were obtained. The calcula-
tions were then continued downstream by means of the jump conditions
applied tox > Ty, Ty and o/ as discussed in Section 5. 3 to obtain super-
sonic flow,(that is frozen Mach number Mp > 1) in the divergent portion
of the nozzle. For the UTIAS Hypersonic shock tunnel calculations, the
further expansion of the flow past the deflection plate and a terminal wedge
nozzle were calculated under the assumption of fully frozen flow. . In the
terminal wedge nozzle only the test section conditions were evaluated. The
frozen flow assumption in these later expansions was made since at the end
of the primary nozzle &~ and 7;’ were of the order of 103,
To these inviscid results in the test-section, boundary layer corrections
were applied using the formula for boundary layer displacement thickness
o given by Burke and Bird (Ref. 39) for turbulent flows.

These various steps are shown in the flow diagram given below.
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| 7. /e |

£ oo, 8, Ko

Equilibrium, partially
frozen mass flows and
flow properties through-
out the nozzle,

. Starting upstream of throat find Starting downstream of throat
nonequilibrium mass flow and Use equilibrium mass flow
critical point. calculate supersonic flow
Continue downstream for super- up to the end of the primary
sonic flow by discontinuous nozzle,
changes in g , Tt, Ty , oz Up
to the end of the primary nozzle,

calculate flow through
deflection plate by frozen
Prandl-Meyer Expansion

Evaluate new mass flow
for the flow entering the
terminal wedge nozzle
and find test-section
conditions under frozen
flow assumption,

correct the:lse inviscid
conditions for boundary
layer effects.

For the evaluation of the various steps in the main programme several
subprogrammes were written. They were:

SUMEJ:  For the evaluation of Q(Ty), Q(Ty ), QTp ), Q(-U) and
EC‘K;))Z(Tt), £(T, ), &Z(-U). As indicated in Section 5.2, the
vibrational energy and the partition functions were evaluated
through a summation of exponentials to take into account slight
anharmonicities,

FUN 3: For the evaluation of partially frozen flow properties through-
out the nozzle as a solution of Egs. (C3), (C4), (C25), (C27) --
uses subprogramme FUNRO, FUNHT.

FUN 4: For the evaluation of partially frozen flow properties throughout
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FUN 5:

FUN 51:

FUN HT:

FUN 52:

FUN 53:

FUN 6:

FUNRO:

FUNRO2:

SEARCH:

EQUILL:

INTEGR:

DERIVT:

TEST 17:

the nozzle as a solution of Egs. (C2), (C3), (C4) and (C25) --
Uses subprogramme FUNRO.

For the evaluation of equilibrium mass flow as a solution of
Eq.s (C1), (C3), (C4), (C18) and (C21) -~ Uses subprogrammes
FUN 51, FUN 52, FUN 53, FUN RO2 and library tape sub-
routine JCPM.,

Equation (C21) -- Uses subprogramme FUNHT.,

Aty - Ea. (C12)
Equation (C18)
LHS Of Eq. (C18)

For the evaluation of equilibrium flow properties throughout
the nozzle as a solution of Egs. (C1) to (C4) and (C18) --
Uses subprogrammes FUN 52, FUN 53, RUNRO2 and Library
Tape subroutine JCPM.,

Eq. (C25) gives )0 as a function of o< and Ty for partially
frozen flows.

Eq. (C1) -- gives (3 as a function of C*, T£ for equilibrium
flow.

For the solution of two unknowns Tt, ¢ from algebraic -
transcendental equations (C1), (C3), (C4), (C18), and (C21) or
(C1) to (C4) and (C18) -- Used for evaluation of equilibrium
mass flow, equilibrium flow properties in the nozzle and initial
conditions for starting nonequilibrium flow calculations.

For calculating partially frozen or eguilibrium flow properties
throughout the nozzle.

For integration of the nonequilibrium flow equations, controls
integration step size, output printing interval, total number of
steps and total time used -- Uses subprogrammes DERIV, TEST,
END and Library Tape subroutines DEQ, DEQST.

For the evaluation of the derwatlves ax s %é' ”a'—‘ used
by DEQ and DEQST in the integration by fourth order Runge-
Kutta method.

For the evaluation of the critical nonequilibrium mass flow for

nonequilibrium calculations starting upstream of the throat and
for the prescription of jump conditions in X , Ty, T, ,

for calculations downstream of the critical point -- used only in
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the calculations starting upstream of the throat,.
END 7: a dummy subroutine,

TEST 7: (Dummy) a dummy subroutine for calculations starting down-
stream of the throat,

FUNPM: for calculation of flow past the deflection plate through a frozen
Prandtl-Meyer expansion.

FUNT: for calculation of flow through the terminal wedge nozzle under
frozen flow assumption.

FUNH: for the evaluation of enthalpy.
FUNA: for the nozzle area ratio variations.
SOLN: for calculating the boundary layer effect on the inviscid condi-

tions by iteration,

UROPMS: for evaluation of the various flow properties under frozen and
equilibrium assumptions.

DERIV4: for tD(;_ calculation gf partially frozen flows through integration
of Aax = -- uses subprogrammes FUNDT,

FUNA, FUNH.UV8) %%

TEST 4 ) . dummy subroutines for frozen calculations by integration.
END 4 ) °

DERIVE6: for the Calclll,atiéé:_ of equilibrium flows through integration of

dTy _ =& -- uses subprogrammes FUNDT, FUNA,
ax (‘-M%) QT{—'
FUNH.

TEST 6 ) . dummy subroutines for equilibrium calculations by integration.
END6 )
FUNDT: calculates zl for partially frozen and equilibrium
O-m*) 'RTe
flows with the corresponding f-'— and M2, i.e. M{_z and
Mez respectively. v

The various Fortran names occurring in each of these subprogramme and
their expression in non-dimensional form are given in the following pages.

Non-Dimensionalisation

For the calculations on the computer, all the flow variables and rate constants
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were non-dimensionalised as follows:-

~p T; /) . DPressure, translational temperature, density,
s D t—p/ = . . o N o .
atomic mass fraction in the reservoir (dimensional)
ﬁ/z Z Ke recombination rate constant, vibrational relaxation
o2 Wo time, equilibrium constant at reservoir conditions,
(dimensional)
Ax throat area.

All quantities with dimensions of temperature are non-dimensionalised by
Tt, namely, (primed quantities are dimensional).

TL=2=- g7=0 y=¢Y ;:%g:%}ﬁ—ﬁv @:——‘%(m)

Teo * T % Y Tes 0
pressure P =—7’§/o—= PT, (1+4)/(1+%) (D2)
density f= —/;L/ (D3)
e nthalpy »4 -z-,; = ’7"_;_3"(7; + (~XE 4 X Oy _ (D4)

T [
speeds Z sz;— , 4", :J%z '570(‘(/40()72 (D5)

area A=A /A* (D6)

Rates are non-dimensionalised by their reservoir values,_ namely

SMKR="%= _f,'f 7 exp r' ( 7 - (D7)

_ W - |
=g = et T i‘-u] (08)
K (- e
Heo (r—e 2 e ™

‘4@4,:7;-,6{; Wf (do + O’ﬁ;‘/ :JMKQO,D (D10)
T = otp (4F[*)=TALOD

<. . —
T

where

4 _a,/ -&. p .
D To > > /f £ ‘ -ﬁ,
i, :%{-ﬁ [1-€ /i)@ "':;—:[ﬂy/’?/—fﬁe (D12)

To vary 'Z’ from its normal shock value, a parameter D7~ is introduced
such that

J7AVOY=D[ = T;, (D11}
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With this non-dimensionalisation, the equations transform as follows:

Equilibrium flow:-

The equ1hbr1um relation between o( f , T{ becomes

o(ez 6\«/
g /- (?
2k /ﬁ -F% A D13
_?;7; (?_f‘) (/ —6 y @ . ( )
from which /0 may be written as a function of D/e , Tt in equilibrium as
I 25 (_E/gﬁ—c-ﬁ@é%_a‘f@_) (D14)
— fo o(ez /0
which for the reservoir condltlons 7_'&"_:7;0 ode =040 _f on 7_—/ /
becomes 1= _”ﬁ’_(_///f'&/é 4‘%/ (D15)

D

Dividing Eq. (D14) by Eaq. (D15), we obtain
P (R -EE T G AR (D16)

In the computer programme the numerator is named as FUNRO2 (TT, ALPHA)
with TT and ALPHA as arguments such that the denominator becomes
FROo= FUNRO2 (1., ALPHAO) and the density is given as

f =RO=FUNRO2/FROo (D17)
where FUNRO2 (TT, ALPHA) =(/,) /_ %)@ 5 (/-o()/(’ (D18)

The mass, energy and state equations (C2), (C3), (C4) become,

re’A =)3/°/k?,, 2AA =01

o — m’ —

ﬁ’?‘ 72 =R “*ﬁ/) fw or. £rés= st = Ko (D20)
L BP =P EIRE (10 = RIRT, 7o (1+*/ |
or P =Fllrrod) &%t‘:/"@(/-foy/,_%)

Eq. (C18) which gives the relation between o(, Tt in equilibrium

(D19)

(D21)

becomes,

6, /ﬁ

Evaluating the constant at reservoir condition.

* o) 2 f(.x)__'Z/ZL_

0

Constant =

@ 0—“—[/—5 %) £)
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__ 3 e Tep _ g,
=T Y T T g o

Substituting Eq. (D23) for the constant in Eq, (D22),

. AR T 5., % ., 6 l%,_o/n_@__g_(mél)
RS s ML O i M e i (A

Cancelling the Tt, term under the logarithmic on either side, this is
written as

FUN 53 (TT, ALPHA) = FUN 53 (1., ALPHAo0) = Fo (D25)

with TT and ALPHA as arguments of the function FUN 53 where

[~
Oy ) G o lp
FUN 53 (TT, ALPHA) = Z mwﬁ MW%— *Zﬁfavx/j,g 7y (D26)
and Eq. (D24) denoted by FUN 52 (TT, ALPHA) is simply
FUN 52 (TT, ALPHA) = FUN 52 (TT, ALPHA) - Fo (D27)

Similarly, Eq. (C21) for the determination of equilibrium mass
flow is '

O 2 R YN L L i T
A = o

From (C11) and (C15), it will be seen that —R‘(— and y<£—7; " have dimen-
sions of temperature while from Eqgs. (C12)-(C14), it will be seen that
=l Xt /DXf are dimensionless. Thus the brackets in the

first and last term in Eq. (D28) are dimensionless and the bracket in the
second term has dimensions of temperature, and one finds :

O R L

Here the quantities )0)(/ s X )(7; , #}{ , ﬁ% are given in Egs.
(C11)-(C15), withg, Oi- , T{ are dimensionless quantities, Dividing Eq.
(D29) throughout by R“Tt, one finds

A he_7 by, /’ A he ] = (D30)
Gl Tty + 25,0 Pl T R T g ey 2 [ = ©
which is in dimensionless form. Also ?z = ?'2/ R Tip* This expression

is denoted by the function FUN51 (TT, ALPHA) and the various quantities
are given the following Fortran names,

XALPHA = X,
ROXRO = PxXp
HALPHA = Kx /R
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N7 /2 = FUNHT (ALPHA)
2
q

HT
CAPZ

1§

The other variables in Egs, (D19)-(D21) are denoted in Fortran by

RO - f

U = F

AC or AREA = A

H = h = FUNH (TT, ALPHA)

HO = hy = FUNH (1., ALPHAO0)

P = p

ALFP1 = 1+ X

ALFM1 = 1 -X

ALFoP1 = 1+0%

ALPHEL =  ode (local equilibrium o< )
y{(1) or TT = Ty

y(2) or TV = Ty

y(3) or ALPHA = X

CURLMC =71 (mass flow)

THETAV = 9, P
THETAD = bp = THETDD/Top = ‘91’/5;0
THETAR = 6,

ToD = T, (dimensions in °K)

PoD = po (dimensions in dynes [cm?2)
ROoD = )00 (dimensions ¢ /cm3)

Partially frozen flow :-

For the partially frozen case, the mass, energy, state equations
(D19) to (D21) are the same., The , Tt relation given in Eq. (C25) is,
after evaluation of the constant from the reservoir conditions,

2 gy~ 8 /1 vy
larf= 2o YT = 65— 0-C 7 )

5¢%o 1=t [ GS/T (D31)
—‘&?ﬂ/p 2(1tus) T 1% [e“/’; s ng[/_ = ] :

For partially frozen flow from the reservoir, the on the left hand side
in Eq. (D31) i.e. also <, , so that the above equatmn can be rearranged
f sy Ko [P ’_

'ngfo 2rtr)"F T /4o [ -y ' Zg ("(o / =0
or 5+o/a Sl Q)

jﬂp)o a(/-roc) /-M’[/T/ & (ho)- 67 « (o)
FUNRO = = - (R

f = e S s, ’9’{% ]j (D32)
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The right hand side of Eq. (D32) is denoted by RO=FUNRO (TT, ALPHAQ)
in Fortran and is used to evaluate f for partially frozen flows.

For the evaluation of the partially frozen mass flow, Eq. (C27)

R[] R o

is

g‘[i}_. (1904 s [~ L1 ) 2 — o — FUN3(TT. APHAD) (D33)

Note that T/? is d1mens1on1ess and we have replaced ;’ ‘27 ? ;?
and T} by 7e Teo . The left hand side of Eq. (D33) is denoted in
Fortran by FUN3 (TT, ALPHAo0) with TT, ALPHAO as arguments,

Nonequilibrium flow:-

In nonequilibrium flow also, the mass, energy, state equations
have the same non-dimensional form given in Eqs. (D19)-(D21). The
coupled ordinary differential equations for Ty, £, or /Ty , , o given
in Egs. ( 103), (98), (97) are non-dimensionalised as follows:

Dissociational rate equation

The d1ssoc1at1ona1 rate equation is

— Xy
| o/x'—; (res=1) (D34)
where ¢ and V are already dimensionless and ’y’/ is given by
'y/: ”’(;" F’ [/ o/f-l/\x)o( = 'é;f 4%4/2[/-0(7*%) 0(/0(9”
a a (D35)
/ 2 )
_Z &n )0 é’ /32 -l F2 2 '
T (1= X FREA )¢ (D36)
X = X7  (D37)
where / is a characteristic length and |
) /(=) . Mp Ke 1o
L-L-}JWKC o(2—zf(—FL.o<z
ot K _ /17X (D38
/=olo /p X=* ( )
since e kco— /‘fo(o Thus

ax _ ; oo _ * 4P 2/_‘*.3_2&.’:?‘,_] D39
T ~h e N A
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dd _ 3V (yr-1)

DALDX = va (D40)
where 2
ZETA= S = “Zf’ﬁ___’ fe (D41)
mﬂ RED 2
pst = P - £, p2(1-K +224) % (D42)
| K Ko /=0t
L = == 7€ =5 (D43)
d V = _Q_[_—]Z M (D44)
20 R(Ty Q(-U)

where Q's are given by Eq. (B21)

From Egs. (D9) for Kc and (D18) for FROo, one may note

e L = 0{’2.&. (o — m‘.ém”ﬂ—eﬁfrdf\aﬁ. (—x
Tide P XE T e (me%*) e Px>
. (RE(— e ) (1=
FROo h /=o<t
e PR x K 4= e
ST ERO. Qi) fxX*  FRO,  PxXZ (D45)

Note that Q (Ty) is nothing but the vibrational partition function obtained by
replacing T, by T and is equal to (1-e-°% ). In Eq. (D40) V and
L occur as a product. It was found in the calculations that for Ty < 0.4,

V reaches the capacity of the computer i.e. V > 1038 and K¢q reaches

the other extreme, i.e, K¢1 £ 10-38, Thus the product VL was calculated
by different methods for Ty 2 0.4, namely

(I) for Te > o4

-6
CAPL=PH T € R (-0 f* (D46
where PH1 = 1/FROo (D47)
and CAPYV = Q(T’C )/ Q (TV ) Q(-U) (D438)

(I) for Ty_< 0.4,
CAPL = PH1* [ T; (1-o/)/ [/ 2
CAPV = e'e"/f{ ,Q(V/& (7‘,,)&7/"//) (D50)
The X occurring in Eq. (D42) which takes into account the

relative efficiencies of atoms and molecules in causing dissociation is
given the Fortran name FLABDA and its value given by Eq. (B83) is

(D49)
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FLABDA =_A\ = 35, Ty (D51)
6y

Vibrational relaxation equation:-

The vibrational relaxation equation is
/ /_ / = - ’
dZ/ _ 8 P (E-&) +’;ﬂ”(a =& (D52)
ax T 7T, FCi-o) 2 Cr—=)
The various energy terms && , €/ , B/ , &7 have dimensions of
RTt, while ?/y’ and ?/",’ have dimensions of length and I.”  is dimen-

sionless. Thus dividing the above equation throughout by .%rt’ to
make it non-dimensional, one obtains

A%y _UEp-8) LYWL E-5), LPE-£) (D53)
Ax 8’1/ 27 C1-) g7 Cr=2)
In conformity with the dissociational rate equation

-QV/_tlé L./:L

A
754 =T, T £1,/% s

where Z}p is evaluated at reservoir conditions, Taking 5‘ as a common
factor, one has

(D54)

and

] =_ -5,
L_prlEL Y= (D56)

déy_ A
where ETA = 7: ,g/j 7;0//?-7;: (D57)

Eq. (D56) is used in the calculations,

As was already indicated in section 5. 2, the vibrational energy
and partition function were calculaied by summing over the various energy
levels, The quantities E, G, g, Q(Ty), Q(Tf» ) and Q (-U) were also
calculated in this manner,

We have p —E'//,'é-/;
Cp=—R2 EV/% eV Awi (D58)

/
[/ pa— —— - E‘ 7
and 70(/___ QV/']) —= Z Vi uﬁé?} (D59)
where E/  is the energy with dimensions in ergs and k is the Boltzmanr
constant, m is the mass of the atom in gm. E/, can be expressed in

dimensions w7~/ . as v
E; = ch £/ . (D60)
where EZ whose Fortran name is EJPP is given in Eq. (114) and has
dimensions ¢, 7. Here c is the speed of light and h Planck's constant,
In the computer programme, E: /R was replaced by 6’6- such that
6/' _ E;, — ch ~r (D61)
vy — ,k —_ k t
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Non-dimensionalising by Tto one has
S5

THETVJ = (9“,/:i % f—;’:EJ’/ =FACTOR*£TPP  (D62)

which is denoted in Fortran:by THETVJ. With j=1, one recovers 8,
which is the non-dimensionalised characteristic vibrational temperature.

/ C i
THETAV=8, =6, = &"'/f, = Th—_%— (D63)
D

By this non-dimensionalisation, one has

s =5 . fon) =EPSTY

R, (D64)

and lelz Qw"b’—_ze-ayﬁ; — TV (D65)
8, _

similarly =7, 0y, & /% b =EPST r (D66)

E-=28 e-%/‘f?/QU;) = £BAR | (D67)

G =70y e%" %—U) = GLAR (D68)

Q= %/ % = Q77 (D69)

Sp= Z e %A = Q7TF - (D70)

gw= S e¥Nv = gru (o71)

The quantity /J which occurs in the efficiency factor Pj is also non-dimen-
sionalised by Tt,, that is '

U= U77;0 | (D72)

Since only two values of U are used, namely U=0° and U= &p /6 the
reciprocal of U is written as

CAPUR = CAPU = UFACT/THETAD : " (D73)

Where UFACT is zero or six depending on whether nonpreferential or
preferential model is used., This inverse value 1/U is used since it always
occurs in the equations in that form.

The second term on the right hand side of Eq. (D56) is slightly
changed for T; < 0.4 because of the change in CAPL and CAPV indicated

in Eqs. (D49), (D50), by redefining E and Q(TJc ) given in Egs. (D67) and
(D70) as follows:

. ~6. ~ﬁ f
EBAR=E =2 4 € “%.e ¢ (D74)
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and QTF = Q(Tp) = . e-%T @‘6‘0'/7} FLor Tp <od (D15
The second term in Eq. (D56) is rewritten as

YW LE-2) _ EBAR s |
Zli—t) ?0—09 ( gy~ & A L) i [<op (D76)

Also, Eq. (D56) is written for the vibrational temperature,
instead of vibrational energy in the form

77
DTVRDX = d g/;f/ = DEPDX/DEDTC (D77)
where DEPDX is given in Eq. (D56) and the Fortran name DEDTC means
d&
DEDTC = (D78)
This occurs since &, is a function of %T, . The quantity DEDTC in

Eq. (D77) was also calculated in the subroutine SUMEJ along with &, ,
& (Ty ). The variable TVREC=1/T, is used since it always occurs
in the equations in that form. So, also, since T)c is calculated from

| — L (D79)
Tz A U

the variable TFREC = 1/T)L is used in all calculations,

Equation for Ty:-

, The differential equation for Tt/ as given in Eq. (103) is
-
. ?/Z Jq_, dﬁ/ / a'O(_/_ ) / 2, J‘(-f(ﬁ-@ ad /p ‘DSO)
—-[/—Mf/—;L’“R/A’o{x/ 14X dlx’ r/{/w Nz A e o’x’lU '

which is non-dimensional form is simply,

-4l — £ L/ s oaw /3 - D81)
Dipx F/ZKZ' mMy_zt_ZA/a; /7% olX 7“(7-(/199 f/(/- ﬁ’dx 57!'7

where , are given by Egs. (D40) and (D56) and
is calculated in subprogramme FUNA and is given the Fortran name DABYA
. o
DABYA = - 2 » (D82)
The derivatives %lr;!—’—— g—;(- and dj{-}l"——) are also denoted by

YPRIME (1, 2, 3) reﬁpectwely

All these equations are written in subprogramme DERIV7, which
also evaluated the following further quantities.
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Local Equilibriums{ $-

In all nonequilibrium calculations, the evaluation of the atom
mass fraction in equilibrium with the iocal pressure or density and temper-
ature is of interest to give a measure of the nonequilibrium. The o« S0
calculated could be different depending on whether one uses / T¢ or
T, for its computation; this was pointed out by Clarke (Ref. 41) In theée
calculations the o is based on P, Tt and is given by the equation

Z
ALPHEL :94?::[ 1#@x (14 %)+ R T) RO, *&71,[;2, /% %_/5] ¥ Ds3)

“which was obtained by replacing from Eq. (D16) by the state equation.
The expression for FROo as given in Eq. (D18) is

FROo = Q(T¢ = 1.0) * 2" G0ty w (/- 00) SplnR S (D84)
where 0(, is the value in the reservoir and p, Ty are local values.

Relaxation lengths:-

Vibrational and dissociational relaxation lengths were also
computed for studying the effect of the dissociation models on these. They
are defined as "

Vibrational

VERL = 5o -E, /2% (085)

which takes into account the effect of dissociation and recombination;

VERL I = z 7, (D86)

which does not take into account the dissociation and recombination.’

Dissociational

DRL = (Kep -0 -——jf\f (DY)
which takes into account the vibrational nonequilibrium and

RL| = § /TV (D88)
which does not take this into account.

Rate constants and coupling factor:-

Also, the rate constants ‘é,{/ , %c/ﬂ :f and the
ratio V = "éa/n?/ﬁ / were calculated, thelr Fortrar! names being
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SMKR1 = B, = Ra® 4@4, (D89)

SMKDEQ = 'kdeg =Kk R (D90)

SMKDNQ = &7 g, (D91)

COFAC = 4 , (D92)
o reg /ﬁdeg

Calculations for flow past the deflection plate:

The flow past the deflection 'plate is calculated for frozen flow
through the Prandtl-Meyer fan by the equation,

et/ — +
@+lm tani’ /‘“p/‘—_— Concrv‘m (D93)

e =/
where 0 is the flow deflection angle, My is frozen Mach number, and
—_7%3¢
/—;C — 57 (D94)

where ¢ is the value upstréam of the deflection plate, that is at the end
of the primary nozzle. The constant‘in Eq, -(D93) is evaluated at the same
point. Eq. (D93) is written in subprogramme FUNPM. Once the Mach
number behind the Prandtl-Meyer fan is evaluated from Eq. (D93) the other
flow variables Ty P/ P. are calculated from isentropic relations in
which f;c is used for the isentropic index.

The Fortran names for these various quantities are:

CME1 = My (beh1nd P.M. fan) (D95)
CME1 2 = M,c (before P, M, fan) N L (D96)
GF = [’ (D97)

Tf’ P P/ Z, were given the subscrlpts El for the1r values
behind the P."M., fan i. e.

TE1 = [ge,
ROE1 = /pe ) : :
UE1 = -

fe/

.Test Section Conditions

Inviscid Results:-

The conditions in the test section were calculatéd starting from
Tey , )9& , fe, , ;e/ under the frozen flow assumption, thus using the
isentropic formulae. A new mass flow for the gas entering the terminal

nozzle is evaluated with Joe, R A?e,, and /44/ the entrance cross-section
and is given the Fortran name CURLMI, namely

CURLMI = fz, *feo, *Fe: (D99)

106



The energy equation was slightly modified by removing the vibra-
tional and dissociational terms from the enthalpy expression and writing

(7+30T; + 2= (7r300T;, 182, = He,=HE/  (D100)

where HC1 is the Fortran name for h¢q. The evaluation of Tt in test section
denoted by TE3 is done by the use of Egs. (D99), (D100) and state equation
and the isentropic relation between Teg and Tej. This is written in sub-
programme FUNT,

Boundary layer corrections:-

From these inviscid results and the formula for Jg*, the
boundary layer displacement thickness given in Eq. (108) g * was calculated
and a new area was evaluated taking the boundary layer into account and the
evaluation of Te3 was repeated until the difference between two successive
values of Teg and that of § * was less than 10-9, The Fortran names occuring
in these calculations are

TR = Reference temperature (D101)
REYR = Reference Reynolds number ' (D102)
DELSTR = (D103)
TMC = test section frozen Mach number (D104)

The test section values of Ty, )0 s f , % are given subscript e3, i.e.

TES3 = Ty )
ROE3 = f ) . .

D105
PES - 2 ) in test section (D105)
UE3 = ‘? )

Details of integration procedure in the primary nozzle:-

SUBROUTINE TEST 7 :

As was already discussed in some detail in section 5. 3, for all
calculations starting upstream of the geometrical throat, one has to evaluate
the nonequilibrium mass flow and also jump through the critical point. This
is accomplished by subprogramme TEST 7. The differential equation for
Ty is

P W /oK Y o2y
7;{2 _Lf 8 - et 5 pz”%"”"”a‘&f (D106)

UMy TZE F obx 14X oy )T, Iz

= .9(92 J{/Fg (D107)
where DIFF = / =ML (D108)
and SUM = numerator in brackets /( 7+3o( ) (D109)
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For an expansion from the reservoir Tt decreases and thus ‘/%x is
negative. But until Mf=1, DIFF is positive, thus SUM is negative initially.
For the flow to expand beyond M¢=1, %% should still remain negative, but

for Mfy > 1, DIFF is negative and thus SUM should be positive. In other
words DIFF changes from positive to negative in passing through M¢=1 and
SUM from negative to positive. Both these changes should happen for the
same X which is called the critical point. However, if SUM becomes
positive before My reaches unity, one obtains subsonic flow which is not of
interest. If DIFF becomes negative before SUM becomes positive, the cal-
culations oscillate. When SUM becomes positive first, the mass flow is
increased by changing the value of FACMNE as indicated in Section 5. 3. In
the opposite case FACMNE is decreased until finally the values of FACMNE
for subsonic and oscillatory results differ in their last significant figure used
in calculations, which here is the eighth figure, In this final stage, the: '
values of X Ty, Ty , Oz are increased by a small amount at the point
where SUM reaches its maximum. All these are written in subprogramme
TEST 7 and the various Fortran names are:

Mnep /Mey

FACMNE =

FUP - . = Upper limit on Facmne

FDOWN = Lower limit o1t Facmne

XRE = Restarting - & if Facmne is modified

XADD '= Amount by which. % is jumped at critical point

DY(1, 2, 3) = Amount by which Ty, &, T, are jumped at
critical points.

SUMOLD = value of SUM in previous step to find where
SUM reaches maximum,

EPSIL1 = the amount by which SUM differs from zero,
at the time of jumps. _

KAP = 1,2, 3 indicating if DIFF is -¢2¢ , 0, or +W°
respectively.

NOVER = number of iterations of changing Facmne.

SUBROUTINE INTEGR:

As was indicated at the beginning of this appendix, the computer
programme contained a mechanism for progressive increase of integration
step size as the integration proceeded downstream. This was contained in
subprogramme INTEGR. This was achieved as follows:-

First the integration was carried out with a step size H=HX
where HX is input value and then the same calculations were repeated in
two half steps, i.e. HALF=H/2. These integrations were carried out by
library tape subroutine DEQ which is based on a fourth order Runge-Kutta
method. If the difference for Ty, T, , p¢ between these two computations
was greater than a given amount R2, the step size is decreased by a factor
R4, i.e. a new H is taken such that H=H*R4. If the number of times of this
consecutive reductions in step size is greater than IR6, the calculations were
stopped. This happens in one of two cases: (1) if the flow is extremely close
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to equilibrium or (2) if the critical point is reached. In case (1), the non-
equilibrium calculations are started further downstream and in the later
case the calculations are either started with a new facmne or the jump con-
ditions are applied.

If the difference between the full and half-step calculations was
iess than a value R1, for IR5 consecutive steps, the step size was increased
by a factor R3, 1.e. H=H*R3.

This subroutine also controls the interval of printing results and
stops the calculations when more than a certain time TIMEUP was used or if
the to*al number of steps KSTEP is greater than a given number of steps
NSTEPS or if ¢ reaches its final value XLIMIT.

Some of the other Fortran names which occur in this subroutine

are:

NDEGR = The number of differential equations to be
integrated.

NSTEPR = Interval of printing.

KWRITE = The number of the integration step for which
results are printed.

KINCR = The number of times, the difference between
the full and half step calculations is within
tolerance R1,

XCURR = The current value of X

HTABLE = Integration step size at step number KTABLE.

KTABLE = KSTEP.

SUBROUTINE SEARCH:

This subroutine is used in the beginning of the main programme,
to solve algebraic-transcendental equations for the determination of frozen
and equilibrium rnass flows and flow properties in the whole nozzle and also
to find the initial conditions for starting nonequilibrizm calculations. This
is done by first taking a value of T=ToP and finding the values of (X which
satisfy throat conditions Eq. (D30) ALPHI1 and the constant entropy condition
Eq. (D24); ALPH2 and their difference is denoted by FUN 5. If either of
these is not found ToP=XRIGHT is decreased by a factor FACT and tried
again, If this happens a number of times END, the calculations are stopped.
Similarly a new value of T was taken by decreasing it by an amount DX,

i.e., XLEFT=ToP-DX and again ALPH1 and ALPH2 were found and again
their difference found and compared with the earlier value. If they are of
the same sign XLEFT is further decreased by DX until they are of different
signs. Tkis gives two limits (T, (¥1), (T, 0¢2) at which the FUNS5 is of
opposite signs from which the correct root (T, o¢)was found by using Library
tape subroutine JCP=JCPM.

For the initial conditions and equilibrium and frozen flow pro-
perties in the nozzle, the equations used are entropy and mass conservation
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equation (D24) and (D19).

Other Fortran variables:

XINTGR = 1,0 according as integration is required or not

KBOLTZ = Boltzmann constant

HPLANK = Planck constant

SMMA = Mass of atoms per unit mole

SMM = Mass of an atom

$§g¥gg = ﬁ/y d in dimensions of temperature °K.

PI = JT

IN = Input tape

10UT = Output tape

R = Gas constant referred to diatomic molecule

TOD = Reservoir temperature in 0K

PATM = Reservoir pressure in atm.

Pod = Reservoir pressure in dynes/cm?

Gol, Goz2 = gol, go2 statistical weight of ground energy
level for atoms and molecules respectively

XSTART = The starting value of £ for integration

CAPMF2 =

The equilibrium, frozen and nonequilibrium and current values
of T, J°, }0 etc. are distinguished by subscrips e, f,ne, c, e.g.

TE = T equilibrium
TNE = T nonequilibrium
TC = T current

except in the sections containing the calculations for flow past deflection plate
and test section, this is not adhered to, they being distinguished by subscripts
el, e3 as noted earlier.

SML = Nozzle characteristic length

DO, D1, D2 = Constamnts in the :expression for recombination
rate constant k. Eq. (D10)

BO, B1, B2 = Constants in the expression for vibrational re-
laxation time [, Eq. (D11)

W1, W2, W3 = Constans in the expression for vibrational
energy Ej/

ﬁtigﬁ; ; Limits on CX for solving algebraic-transcen-
dental equations (D24), (D30)

TF1, TF2 = Limits on T for frozen mass flowevaluation

TFI1l, TFI2 = Limits on T for frozen flow calculations

A(1)-A(286) Coefficients in the polynomial fits for Area

= Limits on % where different fits are made for

E(1)-E(F)
: Area
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Order of input data:

The input data was always supplied through a F Format, except
for card (9) below where an I Format is used.

The order in which they are transmitted is for each data card:-

(1) GO01, G02, SMMA, HPLANK, BOLTZK, THETRD, THETDD
(2) TOD, PATM

(3) w1, W2, W3

(4) TF1, TF2

(5) ALPHA1l, ALPHA2, TOP, FACT, END, DX

(6) ALPHA1, ALPHA2, TOP, FACT, END, DXXSTART, XINTGR
(7) HX, XLIMIT

(8) R1, R2, R3, R4, XINTER, TIMEUP

(9) IR5, IR6, NSTEPR, NSTEPS, KLOCK, NTYPE

(10) Do, D1, D2, BO, B1l, B2, UFACT, SML

(11) FUP, FDOWN, XRE, XADD, EPSIL, EPSIL1 o
(12) A(1), A(2), A(3), A(4), A(5), A(B), A(T), A(8)

(13) A(9), A(10), A(11), A(12), A(13), A(14), A(15), A(16)

(14) A(17), A(18), A(19), A(20), A(21), A(22), A(23), A(24)

(15) A(25), A(26), E(1), E(2), E(3), E(4), E(5), E(6)

(16) E(7)

(17) DTAU

(18) DY(1), DY(2), DY(3)

Transmission of output data:

The output is always printed in E Format. They are printed in
general eight quantities per line and the order is:

(1) G01, G02, SMMA, HPLANK, BOLTZK, THETRD, THETDD, T0OD
(2) PATM, PI, R, SMM, To, PoD, THETAR, THETAD

(3) EPSTO, QTo, ATo, ALPHAo, ALFoP1, ALFoMI, ROod, Ho

(4) Fo, FROo, THETAV

When frozen mass flow is calculated the next output data is

(5) TF, UF, ROF, PF, CURLMF, CURLMC, AC, AF1
(6) CAPMFI, AF2, CAPMF2, AE, CAPME

which are throat values for frozen flow.

When frozen flow properties in the nozzle are calculated, they
are printed as:

(71 X, AC, ROC, P, TAUV, TAUD, TC, ALPHAC, UC, AF2,
CAPMF2, AF1, CAPMF1, AE, CAPME
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in one single line for any given 96
Then the equilibrium throat properties are printed as:

(8) FACT, END, DX, XSTART, TE, ALPHAE, UE, ROE
(9) PE, CURLME, AF1, CAPMF1, AF2, CAPMF2, AE, CAPME

If equilibrium flow properties are calculated, they are printed
as in line (7) above. Then the initial conditions for starting nonequilibrium
calculations are printed as:

PE, CURLME, ALPHEI, UEI, ROEI, PEI, FACMNE. ALPHNE, UNE,
RONE, THETAV, EPSC, DEDTC, XTPART. HALPHA, ALPHAC, UC,
ROC, CAPMF2, TNE, CAPMF2, CURLMC

The results of the integration of the differential equations are started on a
new page with the heading,

INTEGRATION STARTING
and the first line gives
XCURR, TT, ALPHA, TVREC, H, FACMNE
The second and third lines give

SMKRO D, ZETA, TAUOD PHI, ETA, DENOM2, DENOM -CONST, CONST2,
GBAR, QTU.

The results of integration for each 25 or 50 steps are then printed in six
lines as,

STEPS, X, TT, ALPHA, TVREC, DTDX, DALDX, DTVRDX.
TV, TFREC, U, EPSTT, EPSTV, EBAR, GBAR, QTT.
QTV, QTF, QTU, CAPV, CAPZ, RO, CAPKC, CAPL.
SMKR, PSI, TAUV, PART 1, PART 2, PART 3, PART 4, PART 5.
PART 6, CAPMF2, AREA, P, ALPHEL, DRL, DRLI, VTRL,
VERL, VERL1, SMKR1, SMKDEQ, SMKDNQ, COFAC, DELSTR.
The end of these integration results is indicated by

END OF RUN

and the last results are printed as above.

The next line of results printed on a new page give the results
of calculations past the deflection plate and in the test section,

The first line give the values in front of the deflection plate as:
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TC, UC, PC, ROC, CAPMF2, CME2, ALPHAC,

In the next two lines are printed the results past the deflection
plate as:

CME1, TE1 AF, UE4 ROE1, PE1l, AC1i, CURLM1
HC1

The next line gives the inviscid test section conditions as:
TE3, ROE3, PE3, AE3, TMC, DELSTR, AC2

and the successive lines give the same results with boundary layer correc-
tions applied, the last line giving the final corrected values.

In the case of calculations starting upstream of the throat, when-
ever FACMNE is changed or the jumps are used, the following data is trans-
mitted at the position of END OF RUN, The line starts with:

RESTART FACMNE = (the new value) DIFF, SUM, SUMOLD
in the first case and in the later case,

XCURR INCREMENTED XCURR, TT, ALPHA, TVR (all new), SUM,
SUMOL.D.,

The Fortran names of the variables of interest from the point
of view of results are already given in the earlier pages. Some names like
PART ], etc. are not needed for results, but to know, if something goes
wrong, what has gone wrong. For example, if any of the calculations of
frozen or equilibrium mass flow or starting values or flow past deflection
plate or in the test section could not be done due to the inadequacy of the
limits, they are indicated by the diagnostic,

REVISE TF LIMITS (frozen mass flow)

ERROR IN SEARCH EXIT = (no.) (Equilibrium mass flow)
REVISE CME LIMITS (flow past deflection plate)

REVISE TE LIMITS (Test section conditions)

the number in equilibrium mass flow calculations indicating where the trouble
arose. This may be understood by looking into subroutine SEARCH.

The flow diagrams in terms of Fortran names and subroutines,
and the listing of the whole programme, are given in the following pages.
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want —
end Jo= test section call :“;dz"‘"lalr
conditions INTEGR rozen conti
tions
yes
ca
SEARCH

find initial
equilibrium
conditions
call SEARCH

test gection
conditions,

MAIN PROGRAMME
Start

section 1

define constants

section 2
introduce dimensionless quantities
icalculate %, Lo Lvo' ho' Fo,
FROO

l

tion 3
L find f; rmai‘l‘&lrolt conditions ]

successful
Yes
section

i, frozen flow by inte- no
gration

yes

section J
find equilibrium throat
congditions

if, equilibrium
flow by integration

cection 7
find nonequilibrium condi-
tions, call SEARCH

l

integrat.
call INTEG

|

[l
| flow past deflection plate
U

end
if
rozen flow . !'lnl“
through algebraic €8 cal est section N nd
equations EQUILI
no yes

through
aigebraic
equations

want
test section
conditions

J

test section conditions
SOLN.

€

FLOW CHART D1



Subroutine INTEGR,

from sections 4, 6,7 of Main Proqramme

call DEQST
for new T,, T , @ DERIV 7
at a new x with H

call DEQS
fornew T, T , o DERIV 7
at a new x with 11/2

write results of
last step

call TEST?

call DE
continue integration
for $x = H

call D
continue inteqratiun

for $x=H/2

increase
step size

write last
step results

record step-
size change

record step 1

size change |

integration
omplet:

printing needed >

write last
step resulfs

FLOW CHART D2
st

if, throat
reached

call TEST7()




subroutine DERIV7

from INTEGR

same as in
last step

calculate , write if

entering
t;o. ¥Y.,n,G, for the first
Q(-U), read DT

time

calculate TFR, €.,
QTY, &, AT ), b

call SUMEJ
for E, Q(Ty)

call SUMEJ
for E, QT

I

calculate CAPV, u, f,
2
P, Mf

proper
CAPL

<0.4

04
proper
CAPL

proper E

<

proper E

.__.I de,/ax, d(l/T,,)/dq

set YPRIME(], 2, 3)=
dT,/dx, de¢/dx, &(1/T,)/dx

return to INTEGR )22

Results to be printed

-ve

find DRL

find VTRL

write output x, Ty,«,
1/Ty and derivatives

proper kdneq

>04
proper kdneq
——l find coupling facto |

write output of
remaining variables

return to,
INTEGR

FLOW CHART D3
————e



subroutine TE.

from INTEGR

read input DY

return
to INTEGR

entering for the first time

KQUIT = 1

return to KQUIT=3

INTEGR DY add

return to XCURR » XRE increase
KQUIT=2, KBACK=1 FACMNE

INTEGR

x add return to
DY add INTEGR
1,2

increase return to
FACMNE INTEGR

return to
INTEGR

KQUIT = 1

return to
INTEGR

reduce
FACMNE

return to
INTEGR

FLOW CHART D4




APPENDIX E

SOME COMMENTS ON THE PROBLEM OF
COUPLED VIBRATIONAL AND DISSOCIATIONAL
EQUILIBRIUM

By: J.E. Dovex

* Department of Chemistry,
University of Toronto, Toronto 5, Ontario, Canada.
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1) Excited Electronic States of the Oxygen Atom

The problem of the various excited electronic states of the oxygen atom and
molecule is referred to rather briefly on this page. If one is concerned mainly
with calculating the equilibrium properties of oxygen to a somewhat moderate
degree of accuracy, then it is certainly quite true that the electronic parti-
tion functions of the oxygen molecule and atom can be treated as constant

over the range 1500°K to 8000°K. Incidentally, over this temperature range,
the atomic partition function actually varies from 8. 38 to 9. 16 and the mole -
cular one from 3. 00 to 3. 68 so that the values given in the report, 8.8 and

3. 3, are the averages of an appreciable spread of values.

There is, however, an additional point, which is illustrated in Fig., 13

which is taken from Ref, 44, The electronically excited molecular states
have, of course, their own sets of vibrational levels. The vibrational levels
of the ground state oxygen molecule are overlapped by those of the 1a
excited state above v = 5 and also by those of the 1 Z*' state above v=9. At
energies close to the dissociation energy, the levels of the 3 £ state also
come into consideration. The degeneracy of the ground electronic state is

3, while the degeneracies of the three excited electronic states mentioned
above are 2, 1and 3 respectively. The point of these remarks is that at
equilibrium the electronically exicted states will be populated, as well as

the ground state, and - other things being equal - the ratio of the populations
of states at a given energy will be the ratio of the electronic degeneracies.

In effect, additional states are available at fairly high internal energies
(electronic plus vibrational energy), and this increases the proportion of
high energy molecular states which will be present at equilibrium. This has,
of course, some influence on the thermal properties of the gas, though as
already mentioned the effects are not extemely large. However, if, as seems
likely, the higher energy states are of considerable importance in determining
the rates of recombination and dissociation reactions, the effects on the
kinetics could be considerable. The extent of any possible effect in an

actual reaction kinetic problem will depend on whether the electronic states
actually are populated under the particular experimental conditions and on
the rates of population and depopulation. These rates have been studied in
only a few cases, and the results, as you will know, indicate that transla-
tional-electronic energy transfer is rather slow, but that vibrational-elec-
tronic transfer is quite efficient, In such a case, the degree of electronic
excitation would tend to be close to that of vibration., (However, the evidence
so far is mostly concerned with the electronic excitation of metal atoms,

and it is not completely certain that this can be applied directly to the elec-
tronic states of molecules.) This problem of the effect and possible partici-
pation of molecular electronic states seems to have received almost no
attention in the literature, and I know of no direct experimental evidence of
any effect on the kinetics. However, such evidence would be quite difficult
to obtain at present.
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FIG. 13 Potential Curves of the Observed States of the Og Molecule, A
number of states lying above 100,000 cm~! (Price and Collins (571) ) are

not drawn, since sufficiently accurate data are not available for them. The
3%+ state has actually three more vibrational levels below the lowest

oneY%shown (see Herzberg (1044) ). Taken from Reference 44, Fig., 195.
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2) Formulation of Dissociation Rates

The formulation of dissociation rates which is given here is applicable to
the dissociation of relatively complex molecules, but not generally of dia-
tomic molecules. The point is that for a molecule which has a number of
different modes of vibration, it can often happen that it receives sufficient
internal energy to dissociate it and yet lives for many vibrational periods
before actually falling apart., Then the mean lifetime of an excited molecule
may be much greater than the time interval between collisions, and one may
correctly consider that the activated complex consists of a single molecule.

For the dissociation of diatomic molecules, one has to consider two mole-
cules (or a molecule and an atom) as being the activated complex. When
such a molecule suffers a collision, then if it is going to fall apart at all,
it will do so in a time which is comparable to the duration of a collision. In
general, a diatomic molecule which has sufficient vibrational energy to
enable [#f to dissociate will fall apart within the period of one vibration
(2 x 1014 gec, for 09). This is almost always a much shorter time than
the time between collisions (which even at 100 at mos, and 6000°K is still
about 10-11 sec.). Thus, a molecule flying freely between collisions has
generally no chance of dissociating, and it is a colliding pair of molecules
which constitutes the activated complex.

The formation for diatomic dissociation will then be (differing from the
expressions given in the main body of the report):

k1
Ag + M= Ag*+ M (E1)
k-1
, ko
Ag* + M —=+ Products _ (E2)

Overall rate equation:

Ay + M K4, products : (E3)
The processes in equation (E1) are internal (vibrational) excitation and de-
excitation, This formulation implies that the rate of vibrational excitation
may sometimes in part determine the overall rate.
If one wants to show an activated complex, then one can re-write (E2) as

k

Ag* + M ——-?——»-—[Az - M]:F—-—a—— Products (E4)

In the language of activated complex theory, this implies a transmission

coefficient of unity in writing the equation in this way, that is all complexes
are transformed to products.
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The steady state formulation then leads to

Rate = - d[Azl= ki kg [Az]z
at k-1 + ko
ki k
and kd = _.1__2_
k_1+ kz

The condition for an "equilibrium" rate is that k_;>> kg. Under these
conditions

K
k-
where K, is the equilibrium constant for the processes in equation (E1).

kd= . kzzKl . kz

Note that the overall rate coefficient is now not dependent on concentration
in either case, and that the overall rate depends on Ay 2. In the report,
the overall equilibrium rate was proportional only to A2 (i.e. kg was
inversely proportional to Ao which is evidently not very reasonable,
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Tf/TO ® © ©@ Vibration and dissociation in nonequilibrium downstream of the throat coupled preferential
— = — Vibration and dissociation in nonequilibrium upstream of the throat coupled preferential
T /To — .= Vibration and dissociation in nonequilibrium upstream of the throat coupled non-preferential
i

Vibration in equilibrium, dissociation in nonequilibrium
P/P° — == Frozen everywhere

.= Equilibrium everywhere
r \\\’

O @ @ Vibration and dissociation in nonequilibrium downstream
of the throat uncoupled.

FIG. 4 DISTRIBUTION OF FLOW QUANTITIES IN A PRIMARY HYPERSONIC SHOCK TUNNEL
NOZZLE USING VARIOUS VIBRATION-DISSOCIATION NONEQUILIBRIUM
Po = 82 atm, T, = 5900°K & o =0.69
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FIG. 5 DISTRIBUTION OF FLOW QUANTITIES IN A PRIMARY HYPERSONIC SHOCK TUNNEL
NOZZLE USING VARIOUS VIBRATION-DISSOCIATION NONEQUILIBRIUM
COUPLING MODELS
Pp = 9.-4atm, T, = 5900°K, o, = 0.96

©® © O Vibration and dissociation in nonequilibrium downstream of the throat coupled preferential

— — = — Vibration and dissociation in nonequilibrium upstream of the throat coupled preferential

—— = Vibration and dissociation in nonequilibrium upstream of the throat coupled non-preferential
Vibration in equilibrium, dissociation in nonequilibrium

——«—— Equilibrium everywhere

——— Frozen everywhere

B @ @ Vibration and dissociattion in nonequilibrium downstream of the throat uncoupled
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a) Translational (Ty) and Vibrational Temperatures (T,) as a Function of Area Ratio (A/A%)
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o5k b) Local Mass Fraction ( &€ ) and Local Equilibrium Mass Fraction (o)
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FIG. 17 DISTRIBUTION OF FLOW QUANTITIES IN THE UTIAS 11 in. x 15 in. HYPERSONIC
SHOCK TUNNEL PRIMARY NOZZLE USING VARIOUS VIBRATION=DISSOCIATION
NONEQUILIBRIUM COUPLING MODELS

po = 22.1atm, To = 4800°K, o, = 0.52




c) Flow Pressure (p) and Density ( £)
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d) Flow velocity (q)

FIG. 7 {(continued)
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e) Frozen Mach Number (Mj)
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FIG. 7 (concluded)



..<\< o1jed eaxy

A>Bv aanjexadwa) TeuotieIqlA pue (Y1) aunjeaaduwra) TeuorTje[sSURILY (B)

‘e gp gz = Od “%10009% = OL
‘a1220N AJrWlid T[oUunj, 3o0ys oruosaadAH ,, 61 ¥ ,,TT SVILN
SIXV d1ZZON THL HDNOTV SHILLINVAD® MOTd 40 NOILLVIUVA 8 ‘3141




(penurjuod) g "DIA

°Li/,

———500 10
ot

(®™0) UOT}OBIJ SSBUW WOle WNIIQITInbDa JBO0|
pue (J0) uUOT}OBJJ SSEW WO WNTIQITINDIUOU pue ( b ) AJTO0T84A MOTH (q)




(panuriuod ) g "DIA

ol

¥ | L T ¥ L]

‘(3N) aaqunu yoe uUsZOoag /0)




00l

.A>Bv aanjeaadura) TeuorjeIqIA pUuR Aan aanjeaadwa) [euoTleISURLL, (®B)

"wiye g1 p1 = Od Mo05eY = O
'9122Z0N Arewitad fauung, }ooyg oruosaadLy 6T X ,,IT SVILA
SIXV A1ZZON HHIL DNOTV SHILIINVAD® MOTd 40 NOILVIYVA

6 ‘S1g




(penuriuod) ¢ "DIA

ol

i R-77/

T o =

-———500°l0

(M) uoT}OBIJ SSBUI WOJe Wntaqriinbs o0t

pUE ( %) UOT}DBJJ SSBW WOje wnriqijinbouou pue ( b) £3100194 MOTA (9)




(c) Flow pressure (p) and density ( ).
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FIG. 9 (continued)
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Fig. 11 VARIATION OF COUPLING FACTOR V ALONG THE NOZZLE AXIS
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- (a) Effect of the parameter U
o Axisymmetric hyperbolic nozzle
B To = 5900°K, p,'= 82 atm.
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(c) Eifect of change in vibrational relaxation time

To = 4800°K, p, = 22.10’ atm./\
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FIG. 11 (continued)



(d) Effect of change in vibrational relaxation time

To= 4600°K, p, = 22.45 atm.
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FIG. 1 (continued)




Fig. 12 VARIATION OF RELAXATION LENGTHS ALONG THE NOZZLE
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(a) Dissociational relaxation lengths

Effect of parameter U
To=5900°K , Pz82atm
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(b) Vibrational relaxation lengths
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FIG. 12 ‘continued)
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// (f) Vibrational relaxation lengths
// To = 46000K,  p, = 22. 45 atm
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/ / (h) Vibrational relaxation lengths
// To = 4800°K, pg = 22.10 atm

1 °*
1 ] a1 | L L aaaal

1 10
AR 100

FIG. 12 (continued)




